inst/doc/nimbleNoBounds.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----model, message=FALSE, warning=FALSE--------------------------------------
library(nimbleNoBounds) # Also loads nimble
library(coda)           # For MCMC diagnostics

## Model with bounded priors
boundedDistributionsModel <- nimbleCode({
  b  ~ dbeta(b1, b2)
  c  ~ dchisq(c1)
  e  ~ dexp(e1)
  g  ~ dgamma(g1, g2)
  ig ~ dinvgamma(i1, i2)
  l  ~ dlnorm(l1, l2)
  u  ~ dunif(u1, u2)
  w  ~ dweib(w1, w2)
})

## Model with unbounded priors
unboundedDistributionsModel <- nimbleCode({
  ## Priors transformed to real line
  tb  ~ dLogitBeta(b1, b2)
  tc  ~ dLogChisq(c1)
  te  ~ dLogExp(e1)
  tg  ~ dLogGamma(g1, g2)
  tig ~ dLogInvgamma(i1, i2)
  tl  ~ dLogLnorm(l1, l2)
  tu  ~ dLogitUnif(u1, u2)
  tw  ~ dLogWeib(w1, w2)
  ## Back-transformations
  b  <- ilogit(tb)
  c  <- exp(tc)
  e  <- exp(te)
  g  <- exp(tg)
  ig <- exp(tig) ## Currently doesn't compile if a node is called "i"
  l  <- exp(tl)
  u  <- ilogit(tu)*(u2-u1)+u1 ## Scaled and shifted output from ilogit transformation
  w  <- exp(tw)
})

## List of (fixed) parameters
const = list(
  b1=1   , b2=11,     ## Beta
  c1=2   ,            ## Chi-squared
  i1=2.5 , i2=0.01,   ## Inverse-gamma
  u1=-6  , u2=66,     ## Uniform
  e1=0.1 ,            ## Exponential
  g1=0.1 , g2=10,     ## Gamma
  l1=-3  , l2=0.1,    ## Log-normal
  w1=2   , w2=2       ## Weibull
)

## Build and compile models
rBounded   <- nimbleModel(boundedDistributionsModel, constants=const)
rUnbounded <- nimbleModel(unboundedDistributionsModel, constants=const)
cBounded   <- compileNimble(rBounded)
cUnbounded <- compileNimble(rUnbounded)

## Lists of nodes
stochNodesB   = rBounded$getNodeNames(stochOnly=TRUE)
stochNodesU   = rUnbounded$getNodeNames(stochOnly=TRUE)
monitorNodes  = stochNodesB
distributions = substring(rBounded$getDistribution(monitorNodes), 2, 99)

## ----fitting, eval=FALSE, message=FALSE---------------------------------------
#  ## Configure an MCMC for each model
#  configureMcmcB = configureMCMC(cBounded,   monitors=monitorNodes)
#  configureMcmcU = configureMCMC(cUnbounded, monitors=monitorNodes)
#  
#  ## Remove posterior predictive samplers & replace with univariate Metropolis-Hastings
#  configureMcmcB$removeSamplers()
#  configureMcmcU$removeSamplers()
#  for (nd in stochNodesB) configureMcmcB$addSampler(nd)
#  for (nd in stochNodesU) configureMcmcU$addSampler(nd)
#  print(configureMcmcB)
#  print(configureMcmcU)
#  
#  ## Build & compile the MCMCs
#  rMcmcB <- buildMCMC(configureMcmcB)
#  rMcmcU <- buildMCMC(configureMcmcU)
#  cMcmcB <- compileNimble(rMcmcB)
#  cMcmcU <- compileNimble(rMcmcU)
#  
#  ## The following loop takes approximately 10 minutes.
#  ## You can optionally skip running the loop and load the data object efficiencyGain from the package.
#  ## Or simply just reduce nSamples and nReps.
#  runLoop = FALSE
#  if (runLoop) {
#    nSamples = 1E5
#    nReps    = 111
#    efficiencyGain = matrix(0, ncol=length(monitorNodes), nrow=nReps)
#    for (ii in 1:nReps) {
#      print(ii)
#      ## Run MCMC
#      cMcmcB$run(niter=nSamples, time = TRUE)
#      cMcmcU$run(niter=nSamples, time = TRUE)
#      ## Extract samples
#      samplesB = as.matrix(cMcmcB$mvSamples)
#      samplesU = as.matrix(cMcmcU$mvSamples)
#      ## Calculate effective sample size
#      (effB = effectiveSize(samplesB))
#      (effU = effectiveSize(samplesU))
#      ## Time spent in each sampler
#      timeB = cMcmcB$getTimes()
#      timeU = cMcmcU$getTimes()
#      ## Calculate sampling efficiency
#      (efficiencyB = effB / timeB)
#      (efficiencyU = effU / timeU)
#      ## Calculate efficiencyGain
#      (efficiencyGain[ii,] = efficiencyU / efficiencyB)
#    }
#    colnames(efficiencyGain) = distributions
#    ## write.table(efficiencyGain, file=here::here("nimbleNoBounds/data/efficiencyGain.csv"), sep=";", row.names = FALSE)
#  }

## ----plotting, fig.width=9, fig.height=7, message=FALSE-----------------------
data(efficiencyGain, package="nimbleNoBounds")

boxplot(log10(efficiencyGain), ylab="log10 Efficiency Gain", ylim=c(-1, 4))
abline(h=0)
for (ii in 1:length(distributions)) {
  text(ii, -0.7, paste("x", signif(mean(efficiencyGain[,distributions[ii]]), 3)))
  text(ii, -0.9, paste0("(", paste(signif(quantile(efficiencyGain[,distributions[ii]], c(0.025, 0.975)), 3), collapse=" - "), ")"), cex=0.7)
}

Try the nimbleNoBounds package in your browser

Any scripts or data that you put into this service are public.

nimbleNoBounds documentation built on June 22, 2024, 9:23 a.m.