Nothing
#' Local evaluation of a Bernoulli point process for activity center movement (normal kernel)
#'
#' Density and random generation functions of the Bernoulli point process for activity center movement between occasions based on a bivariate normal distribution and local evaluation.
#'
#' The \code{dbernppLocalACmovement_normal} distribution is a NIMBLE custom distribution which can be used to model and simulate
#' movement of activity centers between consecutive occasions in open population models.
#' The distribution assumes that the new individual activity center location (\emph{x})
#' follows an isotropic multivariate normal centered on the previous activity center (\emph{s}) with standard deviation (\emph{sd}).
#' The local evaluation technique is implemented.
#'
#'
#' @name dbernppLocalACmovement_normal
#'
#' @param x Vector of x- and y-coordinates of a single spatial point (typically AC location at time t+1) scaled to the habitat (see (\code{\link{scaleCoordsToHabitatGrid}}).
#' @param n Integer specifying the number of realisations to generate. Only n = 1 is supported.
#' @param lowerCoords,upperCoords Matrices of lower and upper x- and y-coordinates of all habitat windows. One row for each window.
#' Each window should be of size 1x1 (after rescaling if necessary).
#' @param s Vector of x- and y-coordinates of the isotropic bivariate normal distribution mean (i.e. the AC location).
#' @param sd Standard deviation of the isotropic bivariate normal distribution.
#' @param baseIntensities Vector of baseline habitat intensities for all habitat windows.
#' @param habitatGrid Matrix of habitat window indices. Cell values should correspond to the order of habitat windows in \code{lowerCoords} and \code{upperCoords}.
#' When the habitat grid only consists of a single row or column of windows, an additional row or column of dummy indices has to be added because the \code{nimble} model code requires a matrix.
#' @param habitatGridLocal Matrix of rescaled habitat grid cells indices, from localIndices returned by the \code{getLocalObjects} function (
#' @param resizeFactor Aggregation factor used in the \code{getLocalObjects} function to reduce the number of habitat grid cells.
#' @param localHabWindowIndices Matrix of indices of local habitat windows around each local habitat grid cell (\code{habitatGridLocal}), from localIndices returned by the \code{getLocalObjects} function.
#' @param numLocalHabWindows Vector of numbers of local habitat windows around all habitat grid cells, as returned by the getLocalObjects function (object named \code{numLocalIndices}).
#' The ith number gives the number of local (original) habitat windows for the ith (rescaled) habitat window.
#' @param numGridRows,numGridCols Numbers of rows and columns of the \code{habitatGrid}.
#' @param numWindows Number of habitat windows. This value (positive integer) is used to truncate \code{lowerCoords} and \code{upperCoords}
#' so that extra rows beyond \code{numWindows} are ignored.
#' @param log Logical argument, specifying whether to return the log-probability of the distribution.
#'
#' @return The (log) probability density of the observation vector \code{x}.
#'
#' @author Wei Zhang and Cyril Milleret
#'
#' @import nimble
#' @importFrom stats dnorm
#'
#' @references
#'
#' W. Zhang, J. D. Chipperfield, J. B. Illian, P. Dupont, C. Milleret, P. de Valpine and R. Bischof. 2020.
#' A hierarchical point process model for spatial capture-recapture data. bioRxiv. DOI 10.1101/2020.10.06.325035
#'
#' C. Milleret, P. Dupont, C. Bonenfant, H. Brøseth, Ø. Flagstad, C. Sutherland and R. Bischof. 2019.
#' A local evaluation of the individual state-space to scale up Bayesian spatial capture-recapture. Ecology and Evolution 9:352-363
#'
#' @examples
#'
#' # Creat habitat grid
#' habitatGrid <- matrix(c(1:(4^2)), nrow = 4, ncol=4, byrow = TRUE)
#' coordsHabitatGridCenter <- matrix(c(0.5, 3.5,
#' 1.5, 3.5,
#' 2.5, 3.5,
#' 3.5, 3.5,
#' 0.5, 2.5,
#' 1.5, 2.5,
#' 2.5, 2.5,
#' 3.5, 2.5,
#' 0.5, 1.5,
#' 1.5, 1.5,
#' 2.5, 1.5,
#' 3.5, 1.5,
#' 0.5, 0.5,
#' 1.5, 0.5,
#' 2.5, 0.5,
#' 3.5, 0.5), ncol = 2,byrow = TRUE)
#' colnames(coordsHabitatGridCenter) <- c("x","y")
#' # Create habitat windows
#' lowerCoords <- coordsHabitatGridCenter-0.5
#' upperCoords <- coordsHabitatGridCenter+0.5
#' colnames(lowerCoords) <- colnames(upperCoords) <- c("x","y")
#' # Plot check
#' plot(lowerCoords[,"y"]~lowerCoords[,"x"],pch=16, xlim=c(0,4), ylim=c(0,4),col="red")
#' points(upperCoords[,"y"]~upperCoords[,"x"],col="red",pch=16)
#' points(coordsHabitatGridCenter[,"y"]~coordsHabitatGridCenter[,"x"],pch=16)
#'
#' # Rescale coordinates
#' ScaledLowerCoords <- scaleCoordsToHabitatGrid(coordsData = lowerCoords,
#' coordsHabitatGridCenter = coordsHabitatGridCenter)
#' ScaledUpperCoords <- scaleCoordsToHabitatGrid(coordsData = upperCoords,
#' coordsHabitatGridCenter = coordsHabitatGridCenter)
#' ScaledUpperCoords$coordsDataScaled[,2] <- ScaledUpperCoords$coordsDataScaled[,2] + 1
#' ScaledLowerCoords$coordsDataScaled[,2] <- ScaledLowerCoords$coordsDataScaled[,2] - 1
#' habitatMask <- matrix(1, nrow = 4, ncol=4, byrow = TRUE)
#' # Create local objects
#' HabWindowsLocal <- getLocalObjects(habitatMask = habitatMask,
#' coords = coordsHabitatGridCenter,
#' dmax=4,
#' resizeFactor = 1,
#' plot.check = TRUE
#' )
#'
#' s <- c(1, 1) # Currrent activity center location
#' sd <- 0.1
#' numWindows <- nrow(coordsHabitatGridCenter)
#' baseIntensities <- rep(1,numWindows)
#' numRows <- nrow(habitatGrid)
#' numCols <- ncol(habitatGrid)
#'
#' # The log probability density of moving from (1,1) to (1.2, 0.8)
#' dbernppLocalACmovement_normal(x = c(1.2, 0.8), lowerCoords, upperCoords, s,
#' sd, baseIntensities, habitatGrid,
#' HabWindowsLocal$habitatGrid, HabWindowsLocal$resizeFactor,
#' HabWindowsLocal$localIndices, HabWindowsLocal$numLocalIndices,
#' numRows, numCols, numWindows, log = TRUE)
#'
#'
NULL
#' @rdname dbernppLocalACmovement_normal
#' @export
dbernppLocalACmovement_normal <- nimbleFunction(
run = function(
x = double(1),
lowerCoords = double(2),
upperCoords = double(2),
s = double(1),
sd = double(0),
baseIntensities = double(1),
habitatGrid = double(2),
habitatGridLocal = double(2),
resizeFactor = double(0, default = 1),
localHabWindowIndices = double(2),
numLocalHabWindows = double(1),
numGridRows = integer(0),
numGridCols = integer(0),
numWindows = integer(0),
log = integer(0, default = 0)
) {
## Check if the point x falls within the habitat
if(min(x) < 0 | x[2] >= numGridRows | x[1] >= numGridCols) {
if(log) return(-Inf)
else return(0.0)
}
## Index of the window where x falls
windowInd <- habitatGrid[trunc(x[2])+1, trunc(x[1])+1]
## windowInd == 0 means this window is not defined as habitat
if(windowInd == 0) {
if(log) return(-Inf)
else return(0.0)
}
## Find in which habitat window (from the rescaled habitat grid) the s (source AC location) falls in
sourceAC <- habitatGridLocal[trunc(s[2]/resizeFactor)+1, trunc(s[1]/resizeFactor)+1]
## Get local windows ids within a close distance from the source AC
localWindows <- localHabWindowIndices[sourceAC, 1:numLocalHabWindows[sourceAC]]
## Check if the point x is out of the local area of the AC
if(sum(localWindows == windowInd) == 0){
if(log) return(-Inf)
else return(0.0)
}
## Integrate the intensity function over all habitat windows
windowIntensities <- integrateIntensityLocal_normal(lowerCoords = lowerCoords[1:numWindows,,drop = FALSE],
upperCoords = upperCoords[1:numWindows,,drop = FALSE],
s = s,
baseIntensities = baseIntensities[1:numWindows],
sd = sd,
numLocalWindows = numLocalHabWindows[sourceAC],
localWindows = localWindows)
sumIntensity <- sum(windowIntensities)
## Log intensity at x
# numDims <- 2
# logPointIntensity <- (numDims / 2.0) * log(2.0 * pi) + log(baseIntensities[windowInd]) + sum(dnorm((x - s) / sd, log = 1))
logPointIntensity <- 1.837877 + log(baseIntensities[windowInd]) + sum(dnorm((x - s) / sd, log = 1))
## Log probability density under the Bernoulli point process
logProb <- logPointIntensity - log(sumIntensity)
if(log) return(logProb)
else return(exp(logProb))
returnType(double(0))
}
)
NULL
#' @rdname dbernppLocalACmovement_normal
#' @export
#'
rbernppLocalACmovement_normal <- nimbleFunction(
run = function(
n = integer(0),
lowerCoords = double(2),
upperCoords = double(2),
s = double(1),
sd = double(0),
baseIntensities = double(1),
habitatGrid = double(2),
habitatGridLocal = double(2),
resizeFactor = double(0, default = 1),
localHabWindowIndices = double(2),
numLocalHabWindows = double(1),
numGridRows = integer(0),
numGridCols = integer(0),
numWindows = integer(0)
) {
## Ensure that only one sample is requested
if(n <= 0) {
stop("The number of requested samples must be above zero")
} else if(n > 1) {
print("rbernppACmovement only allows n = 1; using n = 1")
}
## Find in which habitat window (from the rescaled habitat grid) the s (source AC location) falls in
sourceAC <- habitatGridLocal[trunc(s[2]/resizeFactor)+1, trunc(s[1]/resizeFactor)+1]
## Get local windows ids within a close distance from the source AC
numWindowsLoc <- numLocalHabWindows[sourceAC]
localWindows <- localHabWindowIndices[sourceAC, 1:numWindowsLoc]
## Integrate the intensity function over all habitat windows
windowIntensities <- integrateIntensityLocal_normal(lowerCoords = lowerCoords[1:numWindows,,drop = FALSE],
upperCoords = upperCoords[1:numWindows,,drop = FALSE],
s = s,
baseIntensities = baseIntensities[1:numWindows],
sd = sd,
numLocalWindows = numWindowsLoc,
localWindows = localWindows)
sumIntensity <- sum(windowIntensities)
## DO THE SUBSETTING OF THE LOWER AND UPPER COORDS HERE.
lowerCoords1 <- nimMatrix(nrow = numWindowsLoc, ncol = 2)
upperCoords1 <- nimMatrix(nrow = numWindowsLoc, ncol = 2)
for(i in 1:numWindowsLoc){
lowerCoords1[i,1:2] <- lowerCoords[localWindows[i],,drop = FALSE]
upperCoords1[i,1:2] <- upperCoords[localWindows[i],,drop = FALSE]
}
## Call the statified rejection sampler
outCoordinates <- stratRejectionSampler_normal(numPoints = 1,
lowerCoords = lowerCoords1[,,drop = FALSE],
upperCoords = upperCoords1[,,drop = FALSE],
s = s,
windowIntensities = windowIntensities[1:numWindowsLoc],
sd = sd)
return(outCoordinates[1,])
returnType(double(1))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.