nlmixrHess: Calculate Hessian

View source: R/nlmixrGrad.R

nlmixrHessR Documentation

Calculate Hessian

Description

Unlike 'stats::optimHess' which assumes the gradient is accurate, nlmixrHess does not make as strong an assumption that the gradient is accurate but takes more function evaluations to calculate the Hessian. In addition, this procedures optimizes the forward difference interval by nlmixrGill83

Usage

nlmixrHess(par, fn, ..., envir = parent.frame())

Arguments

par

Initial values for the parameters to be optimized over.

fn

A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result.

...

Extra arguments sent to nlmixrGill83

envir

an environment within which to evaluate the call. This will be most useful if what is a character string and the arguments are symbols or quoted expressions.

Details

If you have an analytical gradient function, you should use 'stats::optimHess'

Value

Hessian matrix based on Gill83

Author(s)

Matthew Fidler

References

https://v8doc.sas.com/sashtml/ormp/chap5/sect28.htm

See Also

nlmixrGill83, optimHess

Examples

 func0 <- function(x){ sum(sin(x))  }
 x <- (0:10)*2*pi/10
 nlmixrHess(x, func0)

fr <- function(x) {   ## Rosenbrock Banana function
    x1 <- x[1]
    x2 <- x[2]
    100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
grr <- function(x) { ## Gradient of 'fr'
    x1 <- x[1]
    x2 <- x[2]
    c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
       200 *      (x2 - x1 * x1))
}

h1 <- optimHess(c(1.2,1.2), fr, grr)

h2 <- optimHess(c(1.2,1.2), fr)

## in this case h3 is closer to h1 where the gradient is known

h3 <- nlmixrHess(c(1.2,1.2), fr)

nlmixr documentation built on March 27, 2022, 5:05 p.m.

Related to nlmixrHess in nlmixr...