prediction | R Documentation |
Generate predictions after a generalized non-linear mixed effect model fit
prediction(fit, pred, data = NULL, mc.cores = 1)
fit |
a gnlmm fit object |
pred |
prediction function |
data |
new data |
mc.cores |
number of cores (for Linux only) |
observed and predicted
if (FALSE) { ode <- " d/dt(depot) =-KA*depot; d/dt(centr) = KA*depot - KE*centr; " sys1 <- RxODE(ode) pars <- function() { CL <- exp(THETA[1] + ETA[1]) # ; if (CL>100) CL=100 KA <- exp(THETA[2] + ETA[2]) # ; if (KA>20) KA=20 KE <- exp(THETA[3]) V <- CL / KE sig2 <- exp(THETA[4]) } llik <- function() { pred <- centr / V dnorm(DV, pred, sd = sqrt(sig2), log = TRUE) } inits <- list(THTA = c(-3.22, 0.47, -2.45, 0)) inits$OMGA <- list(ETA[1]+ETA[2]~c(.027, .01, .37)) theo <- theo_md fit <- try(gnlmm(llik, theo, inits, pars, sys1, control = list(trace = TRUE, nAQD = 1) )) if (!inherits(fit, "try-error")) { pred <- function() { pred <- centr / V } s <- try(prediction(fit, pred)) if (!inherits(s, "try-error")) { plot(s$p, s$dv) abline(0, 1, col = "red") } } }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.