saem.fit | R Documentation |
Fit an SAEM model using either closed-form solutions or ODE-based model definitions
saem.fit( model, data, inits, PKpars = NULL, pred = NULL, covars = NULL, mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)), ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE), distribution = c("normal", "poisson", "binomial", "lnorm"), seed = 99 ) saem( model, data, inits, PKpars = NULL, pred = NULL, covars = NULL, mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)), ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE), distribution = c("normal", "poisson", "binomial", "lnorm"), seed = 99 ) ## S3 method for class 'fit.nlmixr.ui.nlme' saem( model, data, inits, PKpars = NULL, pred = NULL, covars = NULL, mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)), ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE), distribution = c("normal", "poisson", "binomial", "lnorm"), seed = 99 ) ## S3 method for class 'fit.function' saem( model, data, inits, PKpars = NULL, pred = NULL, covars = NULL, mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)), ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE), distribution = c("normal", "poisson", "binomial", "lnorm"), seed = 99 ) ## S3 method for class 'fit.nlmixrUI' saem( model, data, inits, PKpars = NULL, pred = NULL, covars = NULL, mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)), ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE), distribution = c("normal", "poisson", "binomial", "lnorm"), seed = 99 ) ## S3 method for class 'fit.RxODE' saem( model, data, inits, PKpars = NULL, pred = NULL, covars = NULL, mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)), ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE), distribution = c("normal", "poisson", "binomial", "lnorm"), seed = 99 ) ## S3 method for class 'fit.default' saem( model, data, inits, PKpars = NULL, pred = NULL, covars = NULL, mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)), ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE), distribution = c("normal", "poisson", "binomial", "lnorm"), seed = 99 )
model |
an RxODE model or lincmt() |
data |
input data |
inits |
initial values |
PKpars |
PKpars function |
pred |
pred function |
covars |
Covariates in data |
mcmc |
a list of various mcmc options |
ODEopt |
optional ODE solving options |
distribution |
one of c("normal","poisson","binomial") |
seed |
seed for random number generator |
Fit a generalized nonlinear mixed-effect model using the Stochastic Approximation Expectation-Maximization (SAEM) algorithm
saem fit object
Matthew Fidler & Wenping Wang
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.