nl.lts: Compute (LTS) Least Trimmed Square Estimate.

Description Usage Arguments Details Value Note Author(s) References See Also Examples

View source: R/nl_lts.R

Description

LTS is minimizing trimmed sum of squares.

Usage

1
nl.lts(formula, data, start, h = NULL, control = nlr.control())

Arguments

formula

nl.form object of the nonlinear model function.

data

List of data used in predictor and response.

start

List of parameter starting value.

h

Percentage of trimming the residuals, if omited the default 25% will be used.

control

nlr.control options, will be submited to least square nlsqr function.

Details

LTS trimme h percent of residuals first then compute the least square estimate, and final parameter estimate is the one minimize the sum of squares of errors.

Value

nl.fitt object of fitted model parameter.

Note

The result data returnd in fitted object is trimmed data.

Author(s)

Hossein Riazoshams, May 2014. Email: riazihosein@gmail.com URL http://www.riazoshams.com/nlr/

References

Riazoshams H, Midi H, and Ghilagaber G, 2018,. Robust Nonlinear Regression, with Application using R, Joh Wiley and Sons.

See Also

nl.form, nl.fitt

Examples

1
2
3
data=list(xr=Weights$Date,yr=Weights$Weight)
fit<- nl.lts(nlrobj1[[14]],data=data,start=list(p1=1000,p2=42,p3=.11))
fit$parameters

nlr documentation built on July 31, 2019, 5:09 p.m.

Related to nl.lts in nlr...