Description Usage Arguments Details Value Note Author(s) References See Also Examples
Derivative free Classic Least square based Multi Stage Estimate (CLSME) for heteroscedastic error case.
1 2 3 | dfr.hetroLS(formula, data, start = getInitial(formula, data), control = nlr.control(
tolerance = 1e-04, minlanda = 1/2^10,maxiter = 25 * length(start)), varmodel,
tau = getInitial(varmodel, vdata), ...)
|
formula |
|
data |
list of data include responce and predictor. |
start |
list of parameter values of nonlinear model function (θ. in f(x,θ)). |
control |
list of |
varmodel |
|
tau |
list of initial values for variance model function |
... |
extra arguments to nonlinear regression model, heteroscedastic variance function, robust loss function or its tuning constants. |
Least square based estimate for nonlinear regression with hetroscedastic error when variance is a general function of unkown parameters.
generalized fitt object nl.fitt.gn
. The hetro
slot include parameter estimate and other information of fitt for heteroscedastic variance model.
(parameters |
nonlinear regression parameter estimate of θ. |
correlation |
of fited model. |
form |
|
response |
computed response. |
predictor |
computed (right side of formula) at estimated parameter with gradient and hessian attributes. |
curvature |
list of curvatures, see |
history |
matrix of convergence history, collumns include: convergence index, parameters, minimized objective function, convergence criterion values, or other values. These values will be used in |
method |
|
data |
list of called data. |
sourcefnc |
Object of class |
Fault |
|
vm |
covariance matrix, diagonal of variance model predicted values. |
rm |
cholesky decomposition of vm. |
gresponse |
transformed of response by rm, include gradinet and hessian attributes. |
gpredictor |
transformed of predictor by rm, include gradinet and hessian attributes. |
hetro |
|
Heteroscedastic variance can have several cases, this function assume variance is parameteric function of predictor (H(t;τ)). If data does not include the predictor variable of varmodel
(t), the predicted of function model f(x;\hat θ) will replace for (t), otherwise user have to defin (t) or (x) as predictor variable of (H).
dfr.hetroLS
is derivative free it is slow convergence, while nl.hetroLS
is derivative based estimate is effectively fast method. Since it is slow algorithm it is recomneded to use larger values for maximum number of iterations in nlr.control
options.
Hossein Riazoshams, May 2014. Email: riazihosein@gmail.com URL http://www.riazoshams.com/nlr/
Riazoshams, H. (2012), Robustifying the Least Squares estimate of parameters of variance model function in nonlinear regression with heteroscedastic variance, Poster Presentation, Royal Statistical Society Conference (RSS) 2012, Telford, UK.
fittmethod
, nl.form
, nl.fitt
, nl.fitt.gn
, nl.hetroLS
, nlr.control
1 2 3 4 5 6 | ntpstart=list(p1=.12,p2=6,p3=1,p4=33)
ntpstarttau=list(tau1=-.66,tau2=2,tau3=.04)
datalist=list(xr=ntp$dm.k,yr=ntp$cm.k)
htls<- dfr.hetroLS(formula=nlrobj1[[15]], data=datalist, start= ntpstart,tau=ntpstarttau,
varmodel=nlrobjvarmdls3[[2]],control=nlr.control(tolerance=1e-8))
htls$parameters
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.