Description Usage Arguments Details Value Note Author(s) References See Also Examples
Classic Least square based Multi Stage Estimate (CLSME) for heteroscedastic error case.
1 2 3 | nl.hetroLS(formula, data, start = getInitial(formula, data),
control = nlr.control(tolerance = 0.001, minlanda = 1/2^10,
maxiter = 25 * length(start)), varmodel, tau = getInitial(varmodel, vdata), ...)
|
formula |
|
data |
list of data include responce and predictor. |
start |
list of parameter values of nonlinear model function (θ. in f(x,θ)). |
control |
list of |
varmodel |
|
tau |
list of initial values for variance model function |
... |
extra arguments to nonlinear regression model, heteroscedastic variance function, robust loss function or its tuning constants. |
Least square based estimate for nonlinear regression with hetroscedastic error when variance is a general function of unkown parameters.
generalized fitt object nl.fitt.gn
. The hetro
slot include parameter estimate and other information of fitt for heteroscedastic variance model.
(parameters |
nonlinear regression parameter estimate of θ. |
correlation |
of fited model. |
form |
|
response |
computed response. |
predictor |
computed (right side of formula) at estimated parameter with gradient and hessian attributes. |
curvature |
list of curvatures, see |
history |
matrix of convergence history, collumns include: convergence index, parameters, minimized objective function, convergence criterion values, or other values. These values will be used in |
method |
|
data |
list of called data. |
sourcefnc |
Object of class |
Fault |
|
vm |
covariance matrix, diagonal of variance model predicted values. |
rm |
cholesky decomposition of vm. |
gresponse |
transformed of response by rm, include gradinet and hessian attributes. |
gpredictor |
transformed of predictor by rm, include gradinet and hessian attributes. |
hetro |
|
Heteroscedastic variance can have several cases, this function assume variance is parameteric function of predictor (H(t;τ)). If data does not include the predictor variable of varmodel
(t), the predicted of function model f(x;\hat θ) will replace for (t), otherwise user have to defin (t) or (x) as predictor variable of (H).
Hossein Riazoshams, May 2016, ongoing book. Email: riazihosein@gmail.com URL http://www.riazoshams.com/nlr/
Riazoshams, H. (2012), Robustifying the Least Squares estimate of parameters of variance model function in nonlinear regression with heteroscedastic variance, Poster Presentation, Royal Statistical Society Conference (RSS) 2012, Telford, UK.
fittmethod
, nl.form
, nl.fitt
, nl.fitt.gn
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.