Nothing
#' For details see the publication by Yin et al. (2003) \dQuote{A Flexible Sigmoid Function of Determinate Growth}.
#' This is a reparameterization of the beta growth function (4 parameters) with guaranteed constraints, so it is expected to
#' behave numerically better than \code{\link{SSbgf4}}.
#'
#' Reparameterizing the four parameter beta growth
#' \itemize{
#' \item ldtm = log(t.e - t.m)
#' \item ldtb = log(t.m - t.b)
#' \item t.e = exp(lt.e)
#' \item t.m = exp(lt.e) - exp(ldtm)
#' \item t.b = (exp(lt.e) - exp(ldtm)) - exp(ldtb)
#' }
#'
#' @title self start for the reparameterized Beta growth function with four parameters
#' @name SSbg4rp
#' @rdname SSbg4rp
#' @description Self starter for Beta Growth function with parameters w.max, lt.e, ldtm, ldtb
#' @param time input vector (x) which is normally \sQuote{time}, the smallest value should be close to zero.
#' @param w.max value of weight or mass at its peak
#' @param lt.e log of the time at which the maximum weight or mass has been reached.
#' @param ldtm log of the difference between time at which the weight or mass reaches its peak and half its peak.
#' @param ldtb log of the difference between time at which the weight or mass reaches its peak and when it starts growing
#' @details The form of the equation is: \deqn{w.max * (1 + (exp(lt.e) - time)/exp(ldtm)) * ((time - (exp(lt.e) - exp(ldtb)))/exp(ldtb))^(exp(ldtb)/exp(ldtm))}
#' This is a reparameterized version of the Beta-Growth function in which the parameters are unconstrained, but they are expressed in the log-scale.
#' @export
#' @examples
#' \donttest{
#' require(ggplot2)
#' set.seed(1234)
#' x <- 1:100
#' y <- bg4rp(x, 20, log(70), log(30), log(20)) + rnorm(100, 0, 1)
#' dat <- data.frame(x = x, y = y)
#' fit <- nls(y ~ SSbg4rp(x, w.max, lt.e, ldtm, ldtb), data = dat)
#' ## We are able to recover the original values
#' exp(coef(fit)[2:4])
#' ggplot(data = dat, aes(x = x, y = y)) +
#' geom_point() +
#' geom_line(aes(y = fitted(fit)))
#' }
NULL
bg4rpInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["time"]], LHS, data)
if(nrow(xy) < 4){
stop("Too few distinct input values to fit a bg4rp.")
}
w.max <- max(xy[,"y"])
lt.e <- log(NLSstClosestX(xy, w.max))
## Let's assume that t.b is the minimum of x
t.b <- min(xy[,"x"])
tetb <- exp(lt.e) - t.b
ldtm <- log(tetb / 2)
ldtb <- ldtm
value <- c(w.max, lt.e, ldtm, ldtb)
names(value) <- mCall[c("w.max","lt.e","ldtm","ldtb")]
value
}
#' @rdname SSbg4rp
#' @return bg4rp: vector of the same length as x (time) using the beta growth function with four parameters
#' @export
bg4rp <- function(time, w.max, lt.e, ldtm, ldtb){
## Reparameterizing the four parameter beta growth
## ldtm = log(t.e - t.m)
## ldtb = log(t.m - t.b)
## t.e = exp(lt.e)
## t.m = exp(lt.e) - exp(ldtm)
## t.b = (exp(lt.e) - exp(ldtm)) - exp(ldtb)
.exp0 <- (exp(lt.e) - exp(ldtm)) - exp(ldtb) ## This is t.b
.exp1 <- exp(lt.e) - .exp0 ## t.e - t.b
.exp2 <- .exp1 / exp(ldtm) ## This is (t.e - t.b)/(t.e - t.m)
.exp3 <- time - .exp0 ## time - t.b
.exp4 <- .exp3 / .exp1 ## (time - t.b)/(t.e - t.b)
.exp5 <- .exp4^.exp2
.exp6 <- 1 + (exp(lt.e) - time)/exp(ldtm)
.value <- w.max * .exp6 * .exp5
## This function returns zero when time is less than t.b
## .value <- ifelse(time < t.b, 0, .value)
.value[is.nan(.value)] <- 0
.value[.value < 0] <- 0
## The gradient is problematic
## Derivative with respect to w.max
.expi0 <- .exp6 * .exp5
.expi0 <- ifelse(is.nan(.expi0), 0, .expi0)
## Derivative with respect to lt.e
## deriv(~w.max * (1 + (exp(lt.e) - time)/exp(ldtm)) * ((time - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/(exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb))))^((exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/exp(ldtm)),"lt.e")
.expr1 <- exp(lt.e)
.expr3 <- exp(ldtm)
.expr6 <- w.max * (1 + (.expr1 - time)/.expr3)
.expr9 <- .expr1 - .expr3 - exp(ldtb)
.expr10 <- time - .expr9
.expr11 <- .expr1 - .expr9
.expr12 <- .expr10/.expr11
.lexpr12 <- suppressWarnings(log(.expr12))
.expr13 <- .expr11/.expr3
.expr14 <- .expr12^.expr13
.expr20 <- .expr1 - .expr1
.expi1 <- w.max * (.expr1/.expr3) * .expr14 + .expr6 * (.expr14 * (.lexpr12 * (.expr20/.expr3)) - .expr12^(.expr13 - 1) * (.expr13 * (.expr1/.expr11 + .expr10 * .expr20/.expr11^2)))
.expi1 <- ifelse(is.nan(.expi1), 0, .expi1)
## Derivative with respect to ldtm
## deriv(~w.max * (1 + (exp(lt.e) - time)/exp(ldtm)) * ((time - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/(exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb))))^((exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/exp(ldtm)),"ldtm")
.expr2 <- .expr1 - time
.expr28 <- .expr3^2
.expi2 <- .expr6 * (.expr12^(.expr13 - 1) * (.expr13 * (.expr3/.expr11 - .expr10 * .expr3/.expr11^2)) + .expr14 * (.lexpr12 * (.expr3/.expr3 - .expr11 * .expr3/.expr28))) - w.max * (.expr2 * .expr3/.expr28) * .expr14
.expi2 <- ifelse(is.nan(.expi2), 0, .expi2)
## Derivative with respect to ldtb
## deriv(~w.max * (1 + (exp(lt.e) - time)/exp(ldtm)) * ((time - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/(exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb))))^((exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/exp(ldtm)),"ldtb")
.expr8 <- exp(ldtb)
.expi3 <- .expr6 * (.expr12^(.expr13 - 1) * (.expr13 * (.expr8/.expr11 - .expr10 * .expr8/.expr11^2)) + .expr14 * (.lexpr12 * (.expr8/.expr3)))
.expi3 <- ifelse(is.nan(.expi3),0,.expi3)
.actualArgs <- as.list(match.call()[c("w.max", "lt.e", "ldtm", "ldtb")])
## Gradient
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 4L), list(NULL, c("w.max", "lt.e", "ldtm","ldtb")))
.grad[, "w.max"] <- .expi0
.grad[, "lt.e"] <- .expi1
.grad[, "ldtm"] <- .expi2
.grad[, "ldtb"] <- .expi3
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
#' @rdname SSbg4rp
#' @export
SSbg4rp <- selfStart(bg4rp, initial = bg4rpInit, c("w.max", "lt.e", "ldtm", "ldtb"))
# tmpbgf4rp <- function(time, w.max, lt.e, ldtm, ldtb){
# ## Reparameterizing the four parameter beta growth
# ## ldtm = log(t.e - t.m)
# ## ldtb = log(t.m - t.b)
# ## t.e = exp(lt.e)
# ## t.m = exp(lt.e) - exp(ldtm)
# ## t.b = (exp(lt.e) - exp(ldtm)) - exp(ldtb)
# ans <- w.max * (1 + (exp(lt.e) - time)/exp(ldtm)) * ((time - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/(exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb))))^((exp(lt.e) - (exp(lt.e) - exp(ldtm) - exp(ldtb)))/exp(ldtm))
# ans
# }
#
# xx <- 1:100
# yy <- tmpbgf4rp(xx, 40, log(80), log(50), log(20))
# plot(xx, yy)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.