R/SSbgf4.R

Defines functions bgf4 bgf4Init

Documented in bgf4

#' For details see the publication by Yin et al. (2003) \dQuote{A Flexible Sigmoid Function of Determinate Growth}.
#' This is a difficult function to fit because the linear constrains are not explicitly introduced 
#' in the optimization process. See function \code{\link{SSbgrp}} for a reparameterized version.
#' 
#' @title self start for Beta growth function with four parameters
#' @name SSbgf4
#' @rdname SSbgf4
#' @description Self starter for Beta Growth function with parameters w.max, t.e, t.m and t.b
#' @param time input vector (x) which is normally \sQuote{time}.
#' @param w.max value of weight or mass at its peak.
#' @param t.e time at which the weight or mass reaches its peak.
#' @param t.m time at which half of the maximum weight or mass has been reached.
#' @param t.b time at which growth starts.
#' @return a numeric vector of the same length as x (time) containing parameter estimates for equation specified
#' @details This is equation 11 (pg. 368) in the publication by Yin, but with correction (https://doi.org/10.1093/aob/mcg091) and with \sQuote{w.b} equal to zero.
#' @export
#' @examples 
#' \donttest{
#' data(sm)
#' ## Let's just pick one crop
#' sm2 <- subset(sm, Crop == "M")
#' fit <- nls(Yield ~ SSbgf4(DOY, w.max, t.e, t.m, t.b), data = sm2)
#' plot(Yield ~ DOY, data = sm2)
#' lines(sm2$DOY,fitted(fit))
#' ## For this particular problem it could be better to 'fix' t.b and w.b
#' fit0 <- nls(Yield ~ bgf2(DOY, w.max, w.b = 0, t.e, t.m, t.b = 141), 
#'            data = sm2, start = list(w.max = 16, t.e= 240, t.m = 200))
#' }
NULL

bgf4Init <- function(mCall, LHS, data, ...){

  xy <- sortedXyData(mCall[["time"]], LHS, data)
  if(nrow(xy) < 5){
    stop("Too few distinct input values to fit a bgf4")
  }
  w.max <- max(xy[,"y"])
  t.e <- NLSstClosestX(xy, w.max)
  t.b <- min(xy[,"x"])
  t.m <- (t.e + t.b) / 2
  value <- c(w.max, t.e, t.m, t.b)
  names(value) <- mCall[c("w.max","t.e","t.m","t.b")]
  value

}

#' @rdname SSbgf4
#' @return bgf4: vector of the same length as x (time) using the beta growth function with four parameters
#' @examples 
#' x <- seq(0, 17, by = 0.25)
#' y <- bgf4(x, 20, 15, 10, 2)
#' plot(x, y)
#' @export
#' 
bgf4 <- function(time, w.max, t.e, t.m, t.b){

  if(any(t.m > t.e)) stop("t.m should be smaller than t.e") 
  if(any(t.b > t.m)) stop("t.b should be smaller than t.m")
  if(any(t.b > t.e)) stop("t.b should be smaller than t.e")
  
  .expre1 <- (t.e - t.b)/(t.e - t.m)
  .expre11 <- (time - t.b)
  .expre2 <- .expre11/(t.e - t.b)
  .expre3 <- .expre2^(.expre1)
  .expre4 <- 1 + (t.e - time)/(t.e - t.m)
  .value <- w.max * .expre4 * .expre3

  ## This function returns zero when time is less than t.b
  .value <- ifelse(time < t.b, 0, .value)  
  .value[is.nan(.value)] <- 0
  .value[.value < 0] <- 0

   ## Derivative with respect to w.max
   ## deriv(~w.max * (1 + (t.e - time)/(t.e - t.m)) * ((time - t.b)/(t.e - t.b))^((t.e - t.b)/(t.e - t.m)),"w.max")
   .expr2 <- t.e - t.m
   .expr4 <- 1 + (t.e - time)/.expr2
   .expr7 <- t.e - t.b
   .expr45 <- time - t.b
   .expr10 <- (.expr45/.expr7)^(.expr7/.expr2)
   .exp1 <- .expr4 * .expr10
   .exp1 <- ifelse(is.nan(.exp1), 0, .exp1)
   
   ## Derivative with respect to t.e
   ## deriv(~w.max * (1 + (t.e - time)/(t.e - t.m)) * ((time - t.b)/(t.e - t.b))^((t.e - t.b)/(t.e - t.m)),"t.e")
   .expr1 <- t.e - time
   .expr5 <- w.max * (1 + .expr1/.expr2)
   .expr6 <- time - t.b
   .expr8 <- .expr6/.expr7
   .lexpr8 <- suppressWarnings(log(.expr8))
   .expr9 <- .expr7/.expr2
   .expr10 <- .expr8^.expr9
   .expr12 <- 1/.expr2
   .expr13 <- .expr2^2
   .exp2 <- w.max * (.expr12 - .expr1/.expr13) * .expr10 + .expr5 * (.expr10 * (.lexpr8 * (.expr12 - .expr7/.expr13)) - .expr8^(.expr9 - 1) * (.expr9 * (.expr6/.expr7^2)))
   .exp2 <- ifelse(is.nan(.exp2),0,.exp2)

   ## Derivative with respect to t.m
   ## deriv(~w.max * (1 + (t.e - time)/(t.e - t.m)) * ((time - t.b)/(t.e - t.b))^((t.e - t.b)/(t.e - t.m)),"t.m")
   .expr12 <- .expr2^2
   .exp3 <- w.max * (.expr1/.expr12) * .expr10 + .expr5 * (.expr10 * (.lexpr8 * (.expr7/.expr12)))
   .exp3 <- ifelse(is.nan(.exp3),0,.exp3)
    
   ## Derivative with respect to t.b
   ## deriv(~w.max * (1 + (t.e - time)/(t.e - t.m)) * ((time - t.b)/(t.e - t.b))^((t.e - t.b)/(t.e - t.m)),"t.b")
   .exp4 <- -(.expr5 * (.expr10 * (.lexpr8 * (1/.expr2)) + .expr8^(.expr9 - 1) * (.expr9 * (1/.expr7 - .expr6/.expr7^2))))
   .exp4 <- ifelse(is.nan(.exp4),0,.exp4)

   .actualArgs <- as.list(match.call()[c("w.max", "t.e", "t.m", "t.b")])
 
   ##  Gradient
   if (all(unlist(lapply(.actualArgs, is.name)))) {
     .grad <- array(0, c(length(.value), 4L), list(NULL, c("w.max", "t.e", "t.m","t.b")))
     .grad[, "w.max"] <- .exp1
     .grad[, "t.e"] <- .exp2
     .grad[, "t.m"] <- .exp3
     .grad[, "t.b"] <- .exp4
     dimnames(.grad) <- list(NULL, .actualArgs)
     attr(.value, "gradient") <- .grad
   }
    .value
}

#' @rdname SSbgf4
#' @export
SSbgf4 <- selfStart(bgf4, initial = bgf4Init, c("w.max", "t.e", "t.m", "t.b"))

Try the nlraa package in your browser

Any scripts or data that you put into this service are public.

nlraa documentation built on May 29, 2024, 2:01 a.m.