Description Usage Arguments Value Author(s) References Examples
The function computes estimated coefficients value at a given lambda or L1 norm or fraction of norm using a ‘nnlasso’ object obtained using ‘nnlasso’ function.
1 2 |
object |
A ‘nnlasso’ object obtained using ‘nnlasso’ function. |
mode |
If mode="lambda", prediction is made for a given lambda, if mode="norm", prediction is made for a given L1 norm and if mode="fraction", prediction is made for a fraction of norm value. Default is mode="lambda" |
at |
A value at which prediction is to be made. Default is at = 0. |
... |
Not used. Other arguments to predict. |
A vector of estimated coefficients of length p or p+1 at the given value of lambda or L1 norm or fraction of norm, depending on intercept=TRUE or FALSE in ‘nnlasso’ object. Here p is number of predictor variables.
Baidya Nath Mandal and Jun Ma
Mandal, B.N. and Ma, J. (2016). L1 regularized multiplicative iterative path algorithm for non-negative generalized linear models.
1 2 3 4 5 6 7 8 9 10 11 12 | data(car)
attach(car)
x=as.matrix(car[,1:10])
g1=nnlasso(x,y1,family="binomial")
predict(g1,mode="lambda",at=0.1)
predict(g1,mode="L1norm",at=1)
predict(g1,mode="fraction",at=0.5)
g1=nnlasso(x,y,family="normal")
predict(g1,mode="lambda",at=0.09)
predict(g1,mode="L1norm",at=0.6)
predict(g1,mode="fraction",at=0.8)
detach(car)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.