Description Usage Arguments Value Examples
Use Survival() function from 'rms' pacakge to calculate probabilities after lrm(), cph() or psm() regression. If you want to calculate lrm() probabilities, please leave linear.predictors be TRUE and times be missing. If you want to calculate cph() probabilites, please leave both linear.predictors and surv be TRUE.
1 |
reg |
regression results after lrm(), cph() or psm() in 'rms' package. |
times |
if you want to calculate probabilities for lrm() function, please left times missing. |
q |
quantile, for example 0.5 |
lp |
linear predictors |
lieaner predictors and probabilities as a dataframe
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | set.seed(2018)
n <-2019
age <- rnorm(n,60,20)
sex <- factor(sample(c('female','male'),n,TRUE))
sex <- as.numeric(sex)
weight <- sample(50:100,n,replace = TRUE)
time <- sample(50:800,n,replace = TRUE)
units(time)="day"
death <- sample(c(1,0,0),n,replace = TRUE)
df <- data.frame(time,death,age,sex,weight)
library(rms) #needed for lrm(), cph() and psm()
ddist <- datadist(df)
oldoption <- options(datadist='ddist')
# lrm() function
f <- lrm(death~sex+age+weight,data=df,
linear.predictors = TRUE)
head(prob_cal(reg = f))
# cph() function
f <- cph(Surv(time,death)~sex+age+weight,data=df,
linear.predictors=TRUE,surv=TRUE)
head(prob_cal(reg = f,times = c(365,365*2)))
# psm() function
f <- psm(Surv(time,death)~sex+age+weight,data=df)
head(prob_cal(reg = f,times = c(365,365*2)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.