Description Usage Arguments Value Examples
Explore the formula of total points and linear predictors by the best power.
1 | formula_lp(nomogram, power, digits = 6)
|
nomogram |
results of nomogram() function in 'rms' package |
power |
power can be automatically selected based on all R2 equal 1 |
digits |
default is 6 |
formula is the formula of total points and linear predictors. test is the R2 and RMSE which are used to test the fitted points. diff is difference between nomogram points and fitted points
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | library(rms) # needed for nomogram
set.seed(2018)
n <-2019
age <- rnorm(n,60,20)
sex <- factor(sample(c('female','male'),n,TRUE))
sex <- as.numeric(sex)
weight <- sample(50:100,n,replace = TRUE)
time <- sample(50:800,n,replace = TRUE)
units(time)="day"
death <- sample(c(1,0,0),n,replace = TRUE)
df <- data.frame(time,death,age,sex,weight)
ddist <- datadist(df)
oldoption <- options(datadist='ddist')
f <- cph(formula(Surv(time,death)~sex+age+weight),data=df,
x=TRUE,y=TRUE,surv=TRUE,time.inc=3)
surv <- Survival(f)
nomo <- nomogram(f,
lp=TRUE,
fun=list(function(x) surv(365,x),
function(x) surv(365*2,x)),
funlabel=c("1-Year Survival Prob",
"2-Year Survival Prob"))
options(oldoption)
formula_lp(nomogram = nomo)
formula_lp(nomogram = nomo,power = 1)
formula_lp(nomogram = nomo,power = 3,digits=6)
|
Loading required package: Hmisc
Loading required package: lattice
Loading required package: survival
Loading required package: Formula
Loading required package: ggplot2
Attaching package: ‘Hmisc’
The following objects are masked from ‘package:base’:
format.pval, units
Loading required package: SparseM
Attaching package: ‘SparseM’
The following object is masked from ‘package:base’:
backsolve
$formula
b0 x^1
linear predictor 131.9182 821.7001
$test
R2 RMSE
linear predictor 1 0
$diff
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1
nomogram -32.42182 8.663185 49.74819 90.8332 131.9182 173.0032 214.0882
fit -32.42182 8.663185 49.74819 90.8332 131.9182 173.0032 214.0882
diff 0.00000 0.000000 0.00000 0.0000 0.0000 0.0000 0.0000
0.15
nomogram 255.1732
fit 255.1732
diff 0.0000
$formula
b0 x^1
linear predictor 131.9182 821.7001
$test
R2 RMSE
linear predictor 1 0
$diff
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1
nomogram -32.42182 8.663185 49.74819 90.8332 131.9182 173.0032 214.0882
fit -32.42182 8.663185 49.74819 90.8332 131.9182 173.0032 214.0882
diff 0.00000 0.000000 0.00000 0.0000 0.0000 0.0000 0.0000
0.15
nomogram 255.1732
fit 255.1732
diff 0.0000
$formula
b0 x^1 x^2 x^3
linear predictor 131.9182 821.7001 0 0
$test
R2 RMSE
linear predictor 1 0
$diff
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1
nomogram -32.42182 8.663185 49.74819 90.8332 131.9182 173.0032 214.0882
fit -32.42182 8.663185 49.74819 90.8332 131.9182 173.0032 214.0882
diff 0.00000 0.000000 0.00000 0.0000 0.0000 0.0000 0.0000
0.15
nomogram 255.1732
fit 255.1732
diff 0.0000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.