elbouch.test | R Documentation |
Computes the El Bouch, Michel, & Comon's test for normality of a bivariate dependent samples.
elbouch.test(y, x = NULL)
y |
a numeric vector or an object of the |
x |
a numeric vector or an object of the |
This function computes El Bouch, et al. (2022) test for normality of bivariate dependent samples. If 'x' is set to 'NULL', the test computes the univariate counterpart. This test is a correction of Mardia's, (1970) multivariate skewness and kurtosis test for multivariate samples.
A list with class "h.test"
containing the following components:
statistic: |
the El Bouch Z statistic. |
p.value: |
the p value for the test. |
alternative: |
a character string describing the alternative hypothesis. |
method: |
a character string “El Bouch, Michel & Comon's test”. |
data.name: |
a character string giving the name of the data. |
Asael Alonzo Matamoros.
El Bouch, S., Michel, O. & Comon, P. (2022). A normality test for Multivariate dependent samples. Journal of Signal Processing. Volume 201.
Mardia, K. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57 519-530
Lobato, I., & Velasco, C. (2004). A simple test of normality in time series. Journal of econometric theory. 20(4), 671-689.
lobato.test
# Generate an univariate stationary arma process
y = arima.sim(100,model = list(ar = 0.3))
elbouch.test(y)
# Generate a bivariate Gaussian random vector
x = rnorm(200)
y = rnorm(200)
elbouch.test(y = y, x = x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.