random.projection | R Documentation |
Generates a random projection of a univariate stationary stochastic process. Using a beta(shape1,shape2) distribution.
random.projection(y,shape1,shape2,seed = NULL)
y |
a numeric vector or an object of the |
shape1 |
an optional real value with the first shape parameters of the beta distribution. |
shape2 |
an optional real value with the second shape parameters of the beta distribution. |
seed |
An optional |
Generates one random projection of a stochastic process using a beta distribution. For more details, see: Nieto-Reyes, A.,Cuesta-Albertos, J. & Gamboa, F. (2014).
a real vector with the projected stochastic process.
Alicia Nieto-Reyes and Asael Alonzo Matamoros.
Nieto-Reyes, A., Cuesta-Albertos, J. & Gamboa, F. (2014). A random-projection based test of Gaussianity for stationary processes. Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 124-141.Result
Epps, T.W. (1987). Testing that a stationary time series is Gaussian. The Annals of Statistic. 15(4), 1683-1698.
Lobato, I., & Velasco, C. (2004). A simple test of normality in time series. Journal of econometric theory. 20(4), 671-689.
lobato.test
epps.test
# Generating an stationary arma process
y = arima.sim(100,model = list(ar = 0.3))
rp.test(y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.