Nothing
## Numerical illustration: simulation with a sine structural function
library(npiv)
library(MASS)
## Simulate the data
n <- 10000
cov.ux <- 0.5
var.u <- 0.1
mu <- c(1,1,0)
Sigma <- matrix(c(1.0,0.85,cov.ux,
0.85,1.0,0.0,
cov.ux,0.0,1.0),
3,3,
byrow=TRUE)
foo <- mvrnorm(n = n,
mu,
Sigma)
X <- 2*pnorm(foo[,1],mean=mu[1],sd=sqrt(Sigma[1,1])) -1
W <- 2*pnorm(foo[,2],mean=mu[2],sd=sqrt(Sigma[2,2])) -1
U <- foo[,3]
## Cosine structural function
h0 <- sin(pi*X)
Y <- h0 + sqrt(var.u)*U
## Create evaluation data for plotting
X.eval <- seq(min(X),max(X),length=100)
h0 <- sin(pi*X.eval)
d0 <- pi*cos(pi*X.eval)
## Call the npiv() function with specific arguments
model <- npiv(Y, X, W, X.eval=X.eval)
## Plot the estimated function and uniform confidence bands
plot(model, showdata = TRUE)
## Add true function
lines(X.eval, h0)
## Plot the estimated derivative and uniform confidence bands
plot(model, type = "deriv")
## Add true function
lines(X.eval, d0)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.