An implementation of DuMouchel's (1999) <doi:10.1080/00031305.1999.10474456> Bayesian data mining method for the market basket problem. Calculates Empirical Bayes Geometric Mean (EBGM) and quantile scores from the posterior distribution using the GammaPoisson Shrinker (GPS) model to find unusually large cell counts in large, sparse contingency tables. Can be used to find unusually high reporting rates of adverse events associated with products. In general, can be used to mine any database where the cooccurrence of two variables or items is of interest. Also calculates relative and proportional reporting ratios. Builds on the work of the 'PhViD' package, from which much of the code is derived. Some of the added features include stratification to adjust for confounding variables and data squashing to improve computational efficiency. Now includes an implementation of the EM algorithm for hyperparameter estimation loosely derived from the 'mederrRank' package.
Package details 


Author  John Ihrie [cre, aut], Travis Canida [aut], Ismaïl Ahmed [ctb] (author of 'PhViD' package (derived code)), Antoine Poncet [ctb] (author of 'PhViD'), Sergio Venturini [ctb] (author of 'mederrRank' package (derived code)), Jessica Myers [ctb] (author of 'mederrRank') 
Maintainer  John Ihrie <[email protected]> 
License  GPL2  GPL3 
Version  0.7.0 
URL  https://journal.rproject.org/archive/2017/RJ2017063/index.html 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.