View source: R/f_classFunctions.R
summary.openEBGM | R Documentation |
Summarize an openEBGM object
## S3 method for class 'openEBGM'
summary(object, plot.out = TRUE, log.trans = FALSE, ...)
object |
An openEBGM object constructed by |
plot.out |
A logical value indicating whether or not a histogram of the EBGM scores should be displayed |
log.trans |
A logical value indicating whether or not the data should be log-transformed. |
... |
Additional arguments affecting the summary produced |
This function provides a brief summary of the results of the
calculations performed in the ebScores
function. In
particular, it provides the numerical summary of the EBGM and
QUANT_* vectors.
Additionally, calling summary
on an openEBGM
object will produce a histogram of the EBGM scores. By setting the
log.trans parameter to TRUE, one can convert the EBGM score to
EBlog2, which is a Bayesian version of the information criterion
(DuMouchel).
DuMouchel W (1999). "Bayesian Data Mining in Large Frequency Tables, With an Application to the FDA Spontaneous Reporting System." The American Statistician, 53(3), 177-190.
data.table::setDTthreads(2) #only needed for CRAN checks
theta_init <- data.frame(
alpha1 = c(0.5, 1),
beta1 = c(0.5, 1),
alpha2 = c(2, 3),
beta2 = c(2, 3),
p = c(0.1, 0.2)
)
data(caers)
proc <- processRaw(caers)
squashed <- squashData(proc, bin_size = 300, keep_pts = 10)
squashed <- squashData(squashed, count = 2, bin_size = 13, keep_pts = 10)
suppressWarnings(
hypers <- autoHyper(data = squashed, theta_init = theta_init)
)
ebout <- ebScores(processed = proc, hyper_estimate = hypers, quantiles = 5)
summary(ebout)
## Not run: summary(ebout, plot.out = FALSE)
## Not run: summary(ebout, log.trans = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.