View source: R/f_posteriorCalcs.R
Qn | R Documentation |
Qn
calculates Q_n
, the posterior probability that \lambda
came from the first component of the mixture, given N = n (Eq. 6,
DuMouchel 1999). Q_n
is the mixture fraction for the posterior
distribution.
Qn(theta_hat, N, E)
theta_hat |
A numeric vector of hyperparameter estimates (likely from
|
N |
A whole number vector of actual counts from
|
E |
A numeric vector of expected counts from |
The hyperparameter estimates (theta_hat
) are:
\alpha_1, \beta_1
: Parameter estimates of the first
component of the prior distribution
\alpha_2, \beta_2
: Parameter estimates of the second
component
P
: Mixture fraction estimate of the prior distribution
A numeric vector of probabilities.
DuMouchel W (1999). "Bayesian Data Mining in Large Frequency Tables, With an Application to the FDA Spontaneous Reporting System." The American Statistician, 53(3), 177-190.
autoHyper
, exploreHypers
,
negLLsquash
, negLL
,
negLLzero
, and negLLzeroSquash
for
hyperparameter estimation.
processRaw
for finding counts.
Other posterior distribution functions:
ebgm()
,
quantBisect()
data.table::setDTthreads(2) #only needed for CRAN checks
theta_init <- data.frame(
alpha1 = c(0.5, 1),
beta1 = c(0.5, 1),
alpha2 = c(2, 3),
beta2 = c(2, 3),
p = c(0.1, 0.2)
)
data(caers)
proc <- processRaw(caers)
squashed <- squashData(proc, bin_size = 300, keep_pts = 10)
squashed <- squashData(squashed, count = 2, bin_size = 13, keep_pts = 10)
theta_hat <- autoHyper(data = squashed, theta_init = theta_init)$estimates
qn <- Qn(theta_hat, N = proc$N, E = proc$E)
head(qn)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.