Nothing
test_that("Correct result for optimal conditional error function", {
setting_1 <- read.csv(test_path("testdata", "ocef_setting1.csv"))
# Comparison conditional error functions - fixed delta
design_fixed_delta_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.8,
likelihoodRatioDistribution = "fixed", ncp1 = 1, deltaLR = 1 / sqrt(170 / 2),
firstStageInformation = 170 / 2, useInterimEstimate = FALSE
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_fixed_delta_1)
expect_equal(cond_error, setting_1$fixed[-1], tolerance = 1e-4)
# Skip remaining tests on CRAN
skip_on_cran()
# Comparison conditional error functions - maxlr
design_maxlr_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.8,
likelihoodRatioDistribution = "maxlr", ncp1 = 1, deltaLR = 1 / sqrt(170 / 2),
firstStageInformation = 170 / 2, useInterimEstimate = FALSE
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_maxlr_1)
expect_equal(cond_error, setting_1$maxlr[-1], tolerance = 1e-4)
# Comparison conditional error functions - normal
design_normal_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.8,
likelihoodRatioDistribution = "normal", ncp1 = 1, deltaLR = 1 / sqrt(170 / 2),
tauLR = 0.6 / sqrt(170 / 2),
firstStageInformation = 170 / 2, useInterimEstimate = FALSE
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_normal_1)
expect_equal(cond_error, setting_1$normal[-1], tolerance = 1e-4)
# Comparison conditional error functions - exponential
design_exp_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.8,
likelihoodRatioDistribution = "exp", ncp1 = 1, deltaLR = 1 / sqrt(170 / 2),
kappaLR = 1 / sqrt(170 / 2),
firstStageInformation = 170 / 2, useInterimEstimate = FALSE
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_exp_1)
expect_equal(cond_error, setting_1$exp[-1], tolerance = 1e-4)
# Comparison conditional error functions - uniform
design_unif_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.8,
likelihoodRatioDistribution = "unif", ncp1 = 1, deltaLR = 1 / sqrt(170 / 2),
deltaMaxLR = 2 * 1 / sqrt(170 / 2),
firstStageInformation = 170 / 2, useInterimEstimate = FALSE
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_unif_1)
expect_equal(cond_error, setting_1$unif[-1], tolerance = 1e-4)
# Comparison conditional error functions - maxlr with interim estimate
design_maxlr_interim_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.8,
likelihoodRatioDistribution = "maxlr", firstStageInformation = 1,
delta1Min = (qnorm(0.8) - qnorm(0.025)) / 4, useInterimEstimate = TRUE
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_maxlr_interim_1)
expect_equal(cond_error, setting_1$maxlr_interim[-1], tolerance = 1e-4)
# Comparison conditional error functions - maxlr with constraints
C_min <- pnorm(qnorm(0.9) - sqrt(2) * 2.3)
C_max <- pnorm(qnorm(0.9) - sqrt(0.5) * 2.3)
design_maxlr_constr_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.9,
likelihoodRatioDistribution = "maxlr", ncp1 = 1,
firstStageInformation = 1, useInterimEstimate = FALSE,
minimumConditionalError = C_min, maximumConditionalError = C_max
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_maxlr_constr_1)
expect_equal(cond_error, setting_1$maxlr_constr[-1], tolerance = 1e-4)
# Comparison conditional error functions - uniform with constraints
design_unif_constr_1 <- getDesignOptimalConditionalErrorFunction(
alpha = 0.025, alpha1 = 0.000158, alpha0 = 0.5, conditionalPower = 0.9,
likelihoodRatioDistribution = "unif", ncp1 = 1,
deltaMaxLR = 2 / sqrt(170 / 2),
firstStageInformation = 170 / 2, useInterimEstimate = FALSE,
minimumConditionalError = C_min, maximumConditionalError = C_max
)
cond_error <- getOptimalConditionalError(setting_1$p1[-1], design_unif_constr_1)
expect_equal(cond_error, setting_1$unif_constr[-1], tolerance = 1e-4)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.