Nothing
test_that("boost_tree(), objective = binary:logistic, works with type = class", {
skip_if_not_installed("parsnip")
skip_if_not_installed("tidypredict")
skip_if_not_installed("xgboost")
mtcars$vs <- factor(mtcars$vs)
bt_spec <- parsnip::boost_tree(mode = "classification", engine = "xgboost")
bt_fit <- parsnip::fit(bt_spec, vs ~ disp + mpg + hp, mtcars)
orb_obj <- orbital(bt_fit, type = "class")
preds <- predict(orb_obj, mtcars)
exps <- predict(bt_fit, mtcars)
expect_named(preds, ".pred_class")
expect_type(preds$.pred_class, "character")
expect_identical(
preds$.pred_class,
as.character(exps$.pred_class)
)
})
test_that("boost_tree(), objective = binary:logistic, works with type = class", {
skip_if_not_installed("parsnip")
skip_if_not_installed("tidypredict")
skip_if_not_installed("xgboost")
bt_spec <- parsnip::boost_tree(mode = "classification", engine = "xgboost")
bt_fit <- parsnip::fit(bt_spec, Species ~ ., iris)
orb_obj <- orbital(bt_fit, type = "class")
preds <- predict(orb_obj, iris)
exps <- predict(bt_fit, iris)
expect_named(preds, ".pred_class")
expect_type(preds$.pred_class, "character")
expect_identical(
preds$.pred_class,
as.character(exps$.pred_class)
)
})
test_that("boost_tree(), objective = binary:logistic, works with type = prob", {
skip_if_not_installed("parsnip")
skip_if_not_installed("tidypredict")
skip_if_not_installed("xgboost")
mtcars$vs <- factor(mtcars$vs)
bt_spec <- parsnip::boost_tree(mode = "classification", engine = "xgboost")
bt_fit <- parsnip::fit(bt_spec, vs ~ disp + mpg + hp, mtcars)
orb_obj <- orbital(bt_fit, type = "prob")
preds <- predict(orb_obj, mtcars)
exps <- predict(bt_fit, mtcars, type = "prob")
expect_named(preds, c(".pred_0", ".pred_1"))
expect_type(preds$.pred_0, "double")
expect_type(preds$.pred_1, "double")
exps <- as.data.frame(exps)
rownames(preds) <- NULL
rownames(exps) <- NULL
expect_equal(
preds,
exps,
tolerance = 0.0000001
)
})
test_that("boost_tree(), objective = binary:logistic, works with type = prob", {
skip_if_not_installed("parsnip")
skip_if_not_installed("tidypredict")
skip_if_not_installed("xgboost")
bt_spec <- parsnip::boost_tree(mode = "classification", engine = "xgboost")
bt_fit <- parsnip::fit(bt_spec, Species ~ ., iris)
orb_obj <- orbital(bt_fit, type = "prob")
preds <- predict(orb_obj, iris)
exps <- predict(bt_fit, iris, type = "prob")
expect_named(preds, paste0(".pred_", levels(iris$Species)))
expect_type(preds$.pred_setosa, "double")
expect_type(preds$.pred_versicolor, "double")
expect_type(preds$.pred_virginica, "double")
exps <- as.data.frame(exps)
rownames(preds) <- NULL
rownames(exps) <- NULL
expect_equal(
preds,
exps,
tolerance = 0.0000001
)
})
test_that("boost_tree(), objective = binary:logistic, works with type = c(class, prob)", {
skip_if_not_installed("parsnip")
skip_if_not_installed("tidypredict")
skip_if_not_installed("xgboost")
mtcars$vs <- factor(mtcars$vs)
bt_spec <- parsnip::boost_tree(mode = "classification", engine = "xgboost")
bt_fit <- parsnip::fit(bt_spec, vs ~ disp + mpg + hp, mtcars)
orb_obj <- orbital(bt_fit, type = c("class", "prob"))
preds <- predict(orb_obj, mtcars)
exps <- dplyr::bind_cols(
predict(bt_fit, mtcars, type = c("class")),
predict(bt_fit, mtcars, type = c("prob"))
)
expect_named(preds, c(".pred_class", ".pred_0", ".pred_1"))
expect_type(preds$.pred_class, "character")
expect_type(preds$.pred_0, "double")
expect_type(preds$.pred_1, "double")
exps <- as.data.frame(exps)
exps$.pred_class <- as.character(exps$.pred_class)
rownames(preds) <- NULL
rownames(exps) <- NULL
expect_equal(
preds,
exps,
tolerance = 0.0000001
)
})
test_that("boost_tree(), objective = binary:logistic, works with type = c(class, prob)", {
skip_if_not_installed("parsnip")
skip_if_not_installed("tidypredict")
skip_if_not_installed("xgboost")
bt_spec <- parsnip::boost_tree(mode = "classification", engine = "xgboost")
bt_fit <- parsnip::fit(bt_spec, Species ~ ., iris)
orb_obj <- orbital(bt_fit, type = c("class", "prob"))
preds <- predict(orb_obj, iris)
exps <- dplyr::bind_cols(
predict(bt_fit, iris, type = c("class")),
predict(bt_fit, iris, type = c("prob"))
)
expect_named(preds, c(".pred_class", paste0(".pred_", levels(iris$Species))))
expect_type(preds$.pred_class, "character")
expect_type(preds$.pred_setosa, "double")
expect_type(preds$.pred_versicolor, "double")
expect_type(preds$.pred_virginica, "double")
exps <- as.data.frame(exps)
exps$.pred_class <- as.character(exps$.pred_class)
rownames(preds) <- NULL
rownames(exps) <- NULL
expect_equal(
preds,
exps,
tolerance = 0.0000001
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.