Nothing
#' Random Sampling of k-th Order Statistics from a Exponentiated Exponential Poisson G Distribution
#'
#'\code{order_eepg} is used to obtain a random sample of the k-th order statistic from a Exponentiated Exponential Poisson G Distribution.
#' @param size numeric, represents the size of the sample.
#' @param spec character, represents an specific G distribution. Possible values "norm", "exp","lnorm","chisq".
#' @param lambda numeric, represents a scale parameter. Default value is 1.
#' @param a numeric, represents the shape parameter. Default value is 1.
#' @param k numeric, represents the k-th smallest value from a sample.
#' @param n numeric, represents the size of the sample to compute the order statistic from.
#' @param p numeric, represents the 100p percentile for the distribution of the k-th order statistic. Default value is population median, p = 0.5.
#' @param alpha numeric, (1 - alpha) represents the confidence of an interval for the population percentile p of the distribution of the k-th order statistic. Default value is 0.05.
#' @param ... represents others parameters of the G distribution.
#' @return A list with a random sample of order statistics from a Exponentiated Exponential Poisson G Distribution, the value of its join probability density function evaluated in the random sample
#' and an approximate (1 - alpha) confidence interval for the population percentile p of the distribution of the k-th order statistic.
#' @references Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.
#' @references Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.
#' @author Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.
#' @examples
#' library(orders)
#' # A sample of size 10 of the 3-th order statistics from
#' # a Exponentiated Exponential Poisson Exponential Distribution
#' order_eepg(10,"exp",1,1,k=3,n=50,p=0.5,alpha=0.02)
#' # A sample of size 10 of the 3-th order statistics from
#' # a Exponentiated Exponential Poisson Normal Distribution
#' order_eepg(10,"norm",1,1,k=3,n=50,p=0.5)
#' # A sample of size 10 of the 3-th order statistics from
#' # a Exponentiated Exponential Poisson Log-normal Distribution
#' order_eepg(10,"lnorm",1,1,k=3,n=50,p=0.5)
#' # A sample of size 10 of the 3-th order statistics from
#' # a Exponentiated Exponential Poisson Chi-square Distribution
#' order_eepg(10,"chisq",1,1,k=3,n=50,p=0.5,df=3)
#' @importFrom Newdistns qeepg deepg
#' @importFrom stats rbeta
#' @export order_eepg
order_eepg <- function(size,spec,lambda,a,k,n,p=0.5,alpha=0.05,...){
sample <- qeepg(initial_order(size,k,n),spec,lambda,a,...)
pdf <- factorial(size)*cumprod(deepg(sample,spec,lambda,a,...))[size]
log_pdf <- sum(log(2:size)) + sum(log(deepg(sample,spec,lambda,a,...)))
if(size>5){
int_perc_est <- interval_percentile_est(p,size,sample,alpha)
return(list(sample = sample,
pdf = pdf,
log_pdf = log_pdf,
point_percentile_est = point_percentile_est(p,size,sample),
confidence_percentile_est = int_perc_est[1:2],
aprox_coverage_prob = int_perc_est[3]))
}
cat("---------------------------------------------------------------------------------------------\n")
cat("We cannot report the confidence interval. The size of the sample is less or equal than five.\n")
return(list(sample=sample,pdf=pdf))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.