Nothing
#' Random Sampling of k-th Order Statistics from a Zero Inflated Poisson Distribution
#'
#'\code{order_zip} is used to obtain a random sample of the k-th order statistic from a Zero Inflated Poisson distribution and some associated quantities of interest.
#' @param size numeric, represents the size of the sample.
#' @param mu numeric, represents the location parameter values.
#' @param sigma numeric, represents scale parameter values.
#' @param k numeric, represents the K-th smallest value from a sample.
#' @param n numeric, represents the size of the sample to compute the order statistic from.
#' @param p numeric, represents the 100p percentile for the distribution of the K-th order statistic. Default value is population median, p = 0.5.
#' @param alpha numeric, (1 - alpha) represents the confidence of an interval for the population percentile p of the distribution of the k-th order statistic. Default value is 0.05.
#' @param ... represents others parameters of a Zero Inflated Poisson distribution.
#' @return A list with a random sample of order statistics from a Zero Inflated Poisson Distribution, the value of its join probability density function evaluated in the random sample and
#' and an approximate (1 - alpha) confidence interval for the population percentile p of the k-th order statistic.
#' @references Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.
#' @references Ribgy, R. and Stasinopoulos, M. (2005) Generalized Additive Models for Location Scale and Shape, Journal of the Royal Statistical Society. Applied Statistics, Series C.
#' @author Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.
#' @examples
#' library(orders)
#' # A sample of size 20 of the 5-th order statistics from a Zero Inflated Poisson Distribution
#' #order_zip(size=10,k=5,mu=5,sigma=0.1,n=30,p=0.5)
#' @importFrom gamlss.dist qZIP dZIP
#' @importFrom stats rbeta
order_zip <- function(size,k,mu,sigma,n,p=0.5,alpha=0.05,...){
sample <- qZIP(initial_order(size,k,n),mu,sigma,...)
pdf <- factorial(size)*cumprod(dZIP(sample,mu,sigma,...))[size]
log_pdf <- sum(log(2:size)) + sum(log(dZIP(sample,mu,sigma,...)))
if(size>5){
int_perc_est <- interval_percentile_est(p,size,sample,alpha)
return(list(sample = sample,
pdf = pdf,
log_pdf = log_pdf,
point_percentile_est = point_percentile_est(p,size,sample),
confidence_percentile_est = int_perc_est[1:2],
aprox_coverage_prob = int_perc_est[3]))
}
cat("---------------------------------------------------------------------------------------------\n")
cat("We cannot report the confidence interval. The size of the sample is less or equal than five.\n")
return(list(sample=sample,pdf=pdf))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.