R/get-key-values.R

Defines functions print.oe_key_values_list get_keys oe_get_keys.sf oe_get_keys.character oe_get_keys.default oe_get_keys

Documented in oe_get_keys oe_get_keys.character oe_get_keys.default oe_get_keys.sf print.oe_key_values_list

#' Return keys and (optionally) values stored in "other_tags" column
#'
#' This function returns the OSM keys and (optionally) the values stored in the
#' `other_tags` field. See Details. In both cases, the keys are sorted according
#' to the number of occurrences, which means that the most common keys are
#' stored first.
#'
#' @details OSM data are typically documented using several
#'   [`tags`](https://wiki.openstreetmap.org/wiki/Tags), i.e. pairs of two
#'   items, namely a `key` and a `value`. The conversion between `.osm.pbf` and
#'   `.gpkg` formats is governed by a `CONFIG` file that lists which tags must
#'   be explicitly added to the `.gpkg` file. All the other keys are
#'   automatically stored using an `other_tags` field with a syntax compatible
#'   with the PostgreSQL HSTORE type. See
#'   [here](https://gdal.org/drivers/vector/osm.html#driver-capabilities) for
#'   more details.
#'
#'   When the argument `values` is `TRUE`, then the function returns a named
#'   list of class `oe_key_values_list` that, for each key, summarises the
#'   corresponding values. The key-value pairs are stored using the following
#'   format: `list(key1 = c("value1", "value1", "value2", ...), key2 =
#'   c("value1", ...) ...)`. We decided to implement an ad-hoc method for
#'   printing objects of class `oe_key_values_list` using the following
#'   structure:\preformatted{key1 = {#value1 = n1; #value2 = n2; #value3 = n3,
#'   ...} key2 = {#value1 = n1; #value2 = n2; ...} key3 = {#value1 = n1} ...}
#'   where `n1` denotes the number of times that value1 is repeated, `n2`
#'   denotes the number of times that value2 is repeated and so on. Also the
#'   values are listed according to the number of occurrences in decreasing
#'   order. By default, the function prints only the ten most common keys, but
#'   the number can be adjusted using the option `oe_max_print_keys`.
#'
#'   Finally, the `hstore_get_value()` function can be used inside the `query`
#'   argument in `oe_get()` to extract one particular tag from an existing file.
#'   Check the introductory vignette and see examples.
#'
#' @seealso `oe_vectortranslate()`
#'
#' @inheritParams oe_get
#' @param zone An `sf` object with an `other_tags` field or a character vector
#'   (of length 1) that can be linked to or pointing to a `.osm.pbf` or `.gpkg`
#'   file with an `other_tags` field. Character vectors are linked to `.osm.pbf`
#'   files using `oe_find()`.
#' @param values Logical. If `TRUE`, then function returns the keys and the
#'   corresponding values, otherwise only the keys. Defaults to `FALSE. `
#' @param which_keys Character vector used to subset only some keys and
#'   corresponding values. Ignored if `values` is `FALSE`. See examples.
#' @param download_directory Path of the directory that stores the `.osm.pbf`
#'   files. Only relevant when `zone` is as a character vector that must be
#'   matched to a file via `oe_find()`. Ignored unless `zone` is a character
#'   vector.
#' @param ... Ignored.
#'
#' @return If the argument `values` is `FALSE` (the default), then the function
#'   returns a character vector with the names of all keys stored in the
#'   `other_tags` field. If `values` is `TRUE`, then the function returns named
#'   list which stores all keys and the corresponding values. In the latter
#'   case, the returned object has class `oe_key_values_list` and we defined an
#'   ad-hoc printing method. See Details.
#'
#' @export
#'
#' @examples
#' # Copy the ITS file to tempdir() to make sure that the examples do not
#' # require internet connection. You can skip the next 4 lines (and start
#' # directly with oe_get_keys) when running the examples locally.
#'
#' its_pbf = file.path(tempdir(), "test_its-example.osm.pbf")
#' file.copy(
#'   from = system.file("its-example.osm.pbf", package = "osmextract"),
#'   to = its_pbf,
#'   overwrite = TRUE
#' )
#'
#' # Get keys
#' oe_get_keys("ITS Leeds", download_directory = tempdir())
#'
#' # Get keys and values
#' oe_get_keys("ITS Leeds", values = TRUE, download_directory = tempdir())
#'
#' # Subset some keys
#' oe_get_keys(
#'   "ITS Leeds", values = TRUE, which_keys = c("surface", "lanes"),
#'   download_directory = tempdir()
#' )
#'
#' # Print all (non-NA) values for a given set of keys
#' res = oe_get_keys("ITS Leeds", values = TRUE, download_directory = tempdir())
#' res["surface"]
#'
#' # Get keys from an existing sf object
#' its = oe_get("ITS Leeds", download_directory = tempdir())
#' oe_get_keys(its, values = TRUE)
#'
#' # Get keys from a character vector pointing to a file (might be faster than
#' # reading the complete file and then filter it)
#' its_path = oe_get(
#'   "ITS Leeds", download_only = TRUE,
#'   download_directory = tempdir(), quiet = TRUE
#' )
#' oe_get_keys(its_path, values = TRUE)
#'
#' # Add a key to an existing .gpkg file without repeating the
#' # vectortranslate operations
#' its = oe_get("ITS Leeds", download_directory = tempdir())
#' colnames(its)
#' its_extra = oe_read(
#'   its_path,
#'   query = "SELECT *, hstore_get_value(other_tags, 'oneway') AS oneway FROM lines",
#'   quiet = TRUE
#' )
#' colnames(its_extra)
#'
#' # The following fails since there is no points layer in the .gpkg file
#' \dontrun{
#' oe_get_keys(its_path, layer = "points")}
#'
#' # Add layer and read keys
#' its_path = oe_get(
#'   "ITS Leeds", layer = "points", download_only = TRUE,
#'   download_directory = tempdir(), quiet = TRUE
#' )
#' oe_get_keys(its_path, layer = "points")
#'
#' # Remove .pbf and .gpkg files in tempdir
#' rm(its_pbf, res, its_path, its, its_extra)
#' oe_clean(tempdir())
oe_get_keys = function(
  zone,
  layer = "lines",
  values = FALSE,
  which_keys = NULL,
  download_directory = oe_download_directory()
  ) {
  UseMethod("oe_get_keys")
}

#' @name oe_get_keys
#' @export
oe_get_keys.default = function(
  zone,
  layer = "lines",
  values = FALSE,
  which_keys = NULL,
  download_directory = oe_download_directory()
) {
  oe_stop(
    .subclass = "oe_get_keys-noSupport",
    message = paste0(
      "At the moment there is no support for objects of class ",
      class(zone)[1], ". ",
      "Feel free to open a new issue at github.com/ropensci/osmextract."
    )
  )
}

#' @name oe_get_keys
#' @export
oe_get_keys.character = function(
  zone,
  layer = "lines",
  values = FALSE,
  which_keys = NULL,
  download_directory = oe_download_directory()
) {
  if (length(zone) != 1L) {
    oe_stop(
      .subclass = "oe_get_keys-lengthOneCharacterInput",
      message = "The input to argument zone must have length 1."
    )
  }

  if (!file.exists(zone)) {
    # Test if the input zone can be matched with one of the existing files,
    # otherwise stop
    zone = tryCatch(
      error = function(cnd) {
        # The following message is added conditionally since the text doesn't
        # make sense if zone represents the path of a (misspecified) file.
        extra_message <- paste0(
          "You can download the relevant OSM extract running the following code: ",
          "oe_get(", dQuote(zone, q = FALSE), ", download_only = TRUE)"
        )
        oe_stop(
          .subclass = "oe_get_keys-matchedFileMissing",
          message = paste0(
            "The input does not correspond to an existing file and can't be ",
            "matched with any existing pbf/gpkg file. ",
            if (!grepl("(osm|pbf|gpkg)", zone)) extra_message
          )
        )
      },
      oe_find(
        zone,
        quiet = TRUE,
        download_directory = download_directory
      )
    )

    if (length(zone) > 1L) {
      # The paths returned by oe_find are sorted in alphabetical order, so
      # zone[1L] should contain the .gpkg file. I run the following tests to
      # benchmark the two approaches (i.e. read from .pbf and from .gpkg files)
      # and I noticed that it's much faster to read from the .gpkg file:

      # oe_get("London", download_only = TRUE)
      # bench::mark(
      #   {pbf = oe_get_keys(oe_find("London", return_gpkg = FALSE))},
      #   {gpkg = oe_get_keys(oe_find("London", return_pbf = FALSE))},
      #   iterations = 5L
      # )

      # Therefore, I try to prefer the .gpkg files. The only problem is that
      # some of the keys might be excluded from the other-tags field in a .gpkg
      # file, so I will add a warning message.
      zone = zone[1L]
    }
  }

  if (tools::file_ext(zone) %!in% c("gpkg", "pbf", "osm")) {
    oe_stop(
      .subclass = "oe_get_keys-fileMustHavePbfGpkgExtension",
      message = "The input file must have .pbf or .gpkg extension"
    )
  }

  # Check that the selected file contains the selected layer
  if (layer %!in% sf::st_layers(zone)[["name"]]) {
    oe_stop(
      .subclass = "oe_get_keys-missingLayerSelected",
      message = paste0(
        "The matched file does not contain the selected layer. ",
        "You can add it running oe_get() with layer = ",
        dQuote(layer, q = FALSE),  ". ",
        "Check also the examples in the docs."
      )
    )
  }

  # Check that the input file contains the other_tags field
  # See also https://github.com/ropensci/osmextract/issues/158

  # Moreover, starting from sf 1.0.2, sf::st_read raises a warning message when
  # both layer and query arguments are set (while it raises a warning in sf <
  # 1.0.2 when there are multiple layers and the layer argument is not set).
  # See also https://github.com/r-spatial/sf/issues/1444

  existing_fields = colnames(
    my_st_read(
      dsn = zone,
      layer = layer,
      quiet = TRUE,
      query = paste0("SELECT * FROM ", layer, " LIMIT 0")
    )
  )

  if ("other_tags" %!in% existing_fields) {
    oe_stop(
      .subclass = "oe_get_keys-matchedFileMustHaveOtherTagsFields",
      message = paste0(
        "The matched file must have an other_tags field.",
        " You may need to rerun the vectortranslate process."
      )
    )
  }

  # The following manual fields were included since they are also included by
  # default in the output of .osm.pbf/.gpkg files returned by st_read().
  # osm_way_id is used only by multipolyons layer while z_order is used only by
  # lines layer.
  default_fields <- c(
    "osm_id", "osm_way_id", "other_tags", "geometry", "z_order",
    "_ogr_geometry_",
    # NB: "_ogr_geometry_" may be returned when reading 0 features from a pbf
    # file. For example
    # system.file("its-example.osm.pbf", package = "osmextract") |>
    # sf::st_read(quiet = TRUE, query = "SELECT * FROM lines LIMIT 0")
    get_fields_default(layer)
  )

  if (any(existing_fields %!in% default_fields)) {
    warning(
      "The following keys were already extracted from the other_tags field: ",
      paste0(setdiff(existing_fields, default_fields), collapse = " - "), ". ",
      "You can reset them running oe_get(...) with ",
      "force_vectortranslate = TRUE.",
      call. = FALSE
    )
  }

  # Read the gpkg or pbf file selecting only the other_tags column.

  # Moreover, starting from sf 1.0.2, sf::st_read raises a warning message when
  # both layer and query arguments are set (while it raises a warning in sf <
  # 1.0.2 when there are multiple layers and the layer argument is not set).
  # See also https://github.com/r-spatial/sf/issues/1444
  obj = my_st_read(
    dsn = zone,
    layer = layer,
    quiet = TRUE,
    query = paste0("select other_tags from ", layer)
  )

  get_keys(obj[["other_tags"]], values = values, which_keys = which_keys)
}

#' @name oe_get_keys
#' @export
oe_get_keys.sf = function(
  zone,
  layer = "lines",
  values = FALSE,
  which_keys = NULL,
  download_directory = oe_download_directory()
) {
  if ("other_tags" %!in% names(zone)) {
    oe_stop(
      .subclass = "oe_get_keys-inputMustHaveOtherTagsField",
      message = "The input object must have an other_tags field."
    )
  }

  get_keys(zone[["other_tags"]], values = values, which_keys = which_keys)
}

# The following is an internal function used to extract the keys and the values
get_keys = function(text, values = FALSE, which_keys = NULL) {
  # 0. Preprocess the text input and remove all "\n". See
  # https://github.com/ropensci/osmextract/pull/202#issuecomment-846077516
  text = gsub("\n", "", text)

  # 1. Define regexp for keys and search for matches
  regexp_keys = gregexpr(
    # The other_tags field uses the following structure:
    # "KEY1"=>"VALUE1","KEY2"=>"VALUE2" and so on
    # The following regex should match all characters that:
    # 1. Follow ^" or ," (where ^ denotes the start of a line)
    # and
    # 2. Precede the character "=>" (i.e. the delimiter)
    pattern = '(?<=^\\"|\\",\\").+?(?=\\"=>\\")',
    text = text,
    perl = TRUE
  )

  # 2. Extract the keys
  keys = regmatches(text, regexp_keys)

  # Clean
  rm(regexp_keys); gc(verbose = FALSE)

  # 3. If values is FALSE, then just return the (unique and sorted) keys
  if (isFALSE(values)) {
    keys = unlist(keys)
    nums = sort(table(keys), decreasing = TRUE)
    keys = factor(keys, levels = names(nums))
    return(levels(keys))
  }

  # 4. Otherwise, we need to extract the values. I will use a regex that is
  # analogous to the previous query (inverting the lookahead and lookbehind)
  regexp_values = gregexpr(
    pattern = '(?<=(\\"=>\\")).*?(?=\\"$|\\",\\"|,\\")',
    text = text,
    perl = TRUE
  )

  # 5. Extract the values
  values = regmatches(text, regexp_values)

  # Clean
  rm(regexp_values); gc(verbose = FALSE)

  # 6. Check that each key corresponds to a value
  if (!all(lengths(keys) == lengths(values))) {
    oe_stop(
      .subclass = "get_keys_lengthKeysNELengthValues",
      message = paste0(
        "There are more keys than values (or vice-versa). ",
        "This should not happen.",
        "Please raise a new issue at https://github.com/ropensci/osmextract"
      )
    )
  }

  # 7. Unlist and sort the two objects
  keys = unlist(keys)
  values = unlist(values)
  nums = sort(table(keys), decreasing = TRUE)
  keys = factor(keys, levels = names(nums))

  # 8. Nest the two objects
  nested_key_values = split(values, keys)

  # Clean
  rm(keys, values); gc(verbose = FALSE)

  # 9. If which_kyes is not NULL, then filter only the corresponding keys
  if (!is.null(which_keys)) {
    idx = names(nested_key_values) %in% which_keys
    nested_key_values = nested_key_values[idx]
  }

  # 10. The object nested_key_values is a nested list. Unfortunately, the
  # default printing method is quite difficult to understand. Hence, I will
  # assign a new class and define a new printing method.
  structure(
    nested_key_values,
    class = c("oe_key_values_list", class(nested_key_values)),
    nfeatures_OSM = length(text)
  )
}

#' @name oe_get_keys
#' @param x object of class `oe_key_values_list`
#' @param n Maximum number of keys (and corresponding values) to print; can be
#'   set globally by `options(oe_max_print_keys=...)`. Default value is 10.
#' @export
print.oe_key_values_list = function(x, n = getOption("oe_max_print_keys", 10L), ...) {
  # Extract nfeatures_OSM
  nfeatures_OSM = attr(x, "nfeatures_OSM")

  # Truncate the top n elements
  print_truncated = FALSE
  total_length = length(x)
  x_truncated = x
  if (length(x) > n) {
    x_truncated = x[seq_len(n)]
    print_truncated = TRUE
  }

  # Percentages of NA(s)
  perc_NA = (1 - lengths(x_truncated) / nfeatures_OSM) * 100

  # Process each key and create a table-like format for the values
  x_truncated = lapply(
    X = x_truncated,
    FUN = function(values) {
      tab = sort(table(values), decreasing = TRUE)
      paste(paste0("#", names(tab)), tab, sep = " = ", collapse = "; ")
    }
  )
  # The output is like list(key1 = "#value1 = n1; #value2 = n2;...").

  # Extract the names of all keys (since I want to create an output like key =
  # {table of values} and I'm not sure how to extract the keys inside the for
  # loop)
  keys = names(x_truncated)

  # Extract the page-width (i.e. the number of chars used by the console). I
  # don't want to print an output which is too long for the given console.
  my_width = getOption("width")

  # First, print a super short summary
  cat("Found", total_length, "unique keys, printed in ascending order of % NA values. ")
  if (print_truncated) {
    cat("The first", length(x_truncated), "keys are: \n")
  } else {
    cat("\n")
  }

  # Then, print the output using a for loop. I think that nobody wants to print
  # hundreds of thousands of keys, so this shouldn't be a bottleneck.
  for (i in seq_len(min(n, length(x)))) {
    # As written before, I want to create an output like:
    # key = {#value1 = n1; #value2 = n2; ...}
    # so I start printing the ith key and the opening curly bracket
    cat(keys[i], paste0("(", sprintf("%1.0f%%", floor(perc_NA[i])), " NAs)"), "= {")
    # Then I need to check the number of characters of the string that
    # summarises the values corresponding to the ith key. The object
    # width_keys_and_brackets counts the number of characters taken my the ith
    # key, the opening and clonsing curly brackets and the ...
    width_keys_and_brackets = nchar(encodeString(keys[i]), type = "width") + 15
    # If nchar(encodeString(x[[i]])) is longer than the available number of
    # characters, i.e. my_width - width_keys_and_brackets, then I need to
    # truncate the output.
    if (nchar(encodeString(x_truncated[[i]])) > my_width - width_keys_and_brackets) {
      cat(paste0(strtrim(x_truncated[[i]], my_width - width_keys_and_brackets - 2), "..."))
    } else {
      cat(x_truncated[[i]])
    }
    # Print the closing bracket
    cat("}\n")
  }
  if (print_truncated) cat("[Truncated output...]")

  # Return
  invisible(x)
}

Try the osmextract package in your browser

Any scripts or data that you put into this service are public.

osmextract documentation built on May 29, 2024, 6:48 a.m.