Nothing
#' Return keys and (optionally) values stored in "other_tags" column
#'
#' This function returns the OSM keys and (optionally) the values stored in the
#' `other_tags` field. See Details. In both cases, the keys are sorted according
#' to the number of occurrences, which means that the most common keys are
#' stored first.
#'
#' @details OSM data are typically documented using several
#' [`tags`](https://wiki.openstreetmap.org/wiki/Tags), i.e. pairs of two
#' items, namely a `key` and a `value`. The conversion between `.osm.pbf` and
#' `.gpkg` formats is governed by a `CONFIG` file that lists which tags must
#' be explicitly added to the `.gpkg` file. All the other keys are
#' automatically stored using an `other_tags` field with a syntax compatible
#' with the PostgreSQL HSTORE type. See
#' [here](https://gdal.org/drivers/vector/osm.html#driver-capabilities) for
#' more details.
#'
#' When the argument `values` is `TRUE`, then the function returns a named
#' list of class `oe_key_values_list` that, for each key, summarises the
#' corresponding values. The key-value pairs are stored using the following
#' format: `list(key1 = c("value1", "value1", "value2", ...), key2 =
#' c("value1", ...) ...)`. We decided to implement an ad-hoc method for
#' printing objects of class `oe_key_values_list` using the following
#' structure:\preformatted{key1 = {#value1 = n1; #value2 = n2; #value3 = n3,
#' ...} key2 = {#value1 = n1; #value2 = n2; ...} key3 = {#value1 = n1} ...}
#' where `n1` denotes the number of times that value1 is repeated, `n2`
#' denotes the number of times that value2 is repeated and so on. Also the
#' values are listed according to the number of occurrences in decreasing
#' order. By default, the function prints only the ten most common keys, but
#' the number can be adjusted using the option `oe_max_print_keys`.
#'
#' Finally, the `hstore_get_value()` function can be used inside the `query`
#' argument in `oe_get()` to extract one particular tag from an existing file.
#' Check the introductory vignette and see examples.
#'
#' @seealso `oe_vectortranslate()`
#'
#' @inheritParams oe_get
#' @param zone An `sf` object with an `other_tags` field or a character vector
#' (of length 1) that can be linked to or pointing to a `.osm.pbf` or `.gpkg`
#' file with an `other_tags` field. Character vectors are linked to `.osm.pbf`
#' files using `oe_find()`.
#' @param values Logical. If `TRUE`, then function returns the keys and the
#' corresponding values, otherwise only the keys. Defaults to `FALSE. `
#' @param which_keys Character vector used to subset only some keys and
#' corresponding values. Ignored if `values` is `FALSE`. See examples.
#' @param download_directory Path of the directory that stores the `.osm.pbf`
#' files. Only relevant when `zone` is as a character vector that must be
#' matched to a file via `oe_find()`. Ignored unless `zone` is a character
#' vector.
#' @param ... Ignored.
#'
#' @return If the argument `values` is `FALSE` (the default), then the function
#' returns a character vector with the names of all keys stored in the
#' `other_tags` field. If `values` is `TRUE`, then the function returns named
#' list which stores all keys and the corresponding values. In the latter
#' case, the returned object has class `oe_key_values_list` and we defined an
#' ad-hoc printing method. See Details.
#'
#' @export
#'
#' @examples
#' # Copy the ITS file to tempdir() to make sure that the examples do not
#' # require internet connection. You can skip the next 4 lines (and start
#' # directly with oe_get_keys) when running the examples locally.
#'
#' its_pbf = file.path(tempdir(), "test_its-example.osm.pbf")
#' file.copy(
#' from = system.file("its-example.osm.pbf", package = "osmextract"),
#' to = its_pbf,
#' overwrite = TRUE
#' )
#'
#' # Get keys
#' oe_get_keys("ITS Leeds", download_directory = tempdir())
#'
#' # Get keys and values
#' oe_get_keys("ITS Leeds", values = TRUE, download_directory = tempdir())
#'
#' # Subset some keys
#' oe_get_keys(
#' "ITS Leeds", values = TRUE, which_keys = c("surface", "lanes"),
#' download_directory = tempdir()
#' )
#'
#' # Print all (non-NA) values for a given set of keys
#' res = oe_get_keys("ITS Leeds", values = TRUE, download_directory = tempdir())
#' res["surface"]
#'
#' # Get keys from an existing sf object
#' its = oe_get("ITS Leeds", download_directory = tempdir())
#' oe_get_keys(its, values = TRUE)
#'
#' # Get keys from a character vector pointing to a file (might be faster than
#' # reading the complete file and then filter it)
#' its_path = oe_get(
#' "ITS Leeds", download_only = TRUE,
#' download_directory = tempdir(), quiet = TRUE
#' )
#' oe_get_keys(its_path, values = TRUE)
#'
#' # Add a key to an existing .gpkg file without repeating the
#' # vectortranslate operations
#' its = oe_get("ITS Leeds", download_directory = tempdir())
#' colnames(its)
#' its_extra = oe_read(
#' its_path,
#' query = "SELECT *, hstore_get_value(other_tags, 'oneway') AS oneway FROM lines",
#' quiet = TRUE
#' )
#' colnames(its_extra)
#'
#' # The following fails since there is no points layer in the .gpkg file
#' \dontrun{
#' oe_get_keys(its_path, layer = "points")}
#'
#' # Add layer and read keys
#' its_path = oe_get(
#' "ITS Leeds", layer = "points", download_only = TRUE,
#' download_directory = tempdir(), quiet = TRUE
#' )
#' oe_get_keys(its_path, layer = "points")
#'
#' # Remove .pbf and .gpkg files in tempdir
#' rm(its_pbf, res, its_path, its, its_extra)
#' oe_clean(tempdir())
oe_get_keys = function(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()
) {
UseMethod("oe_get_keys")
}
#' @name oe_get_keys
#' @export
oe_get_keys.default = function(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()
) {
oe_stop(
.subclass = "oe_get_keys-noSupport",
message = paste0(
"At the moment there is no support for objects of class ",
class(zone)[1], ". ",
"Feel free to open a new issue at github.com/ropensci/osmextract."
)
)
}
#' @name oe_get_keys
#' @export
oe_get_keys.character = function(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()
) {
if (length(zone) != 1L) {
oe_stop(
.subclass = "oe_get_keys-lengthOneCharacterInput",
message = "The input to argument zone must have length 1."
)
}
if (!file.exists(zone)) {
# Test if the input zone can be matched with one of the existing files,
# otherwise stop
zone = tryCatch(
error = function(cnd) {
# The following message is added conditionally since the text doesn't
# make sense if zone represents the path of a (misspecified) file.
extra_message <- paste0(
"You can download the relevant OSM extract running the following code: ",
"oe_get(", dQuote(zone, q = FALSE), ", download_only = TRUE)"
)
oe_stop(
.subclass = "oe_get_keys-matchedFileMissing",
message = paste0(
"The input does not correspond to an existing file and can't be ",
"matched with any existing pbf/gpkg file. ",
if (!grepl("(osm|pbf|gpkg)", zone)) extra_message
)
)
},
oe_find(
zone,
quiet = TRUE,
download_directory = download_directory
)
)
if (length(zone) > 1L) {
# The paths returned by oe_find are sorted in alphabetical order, so
# zone[1L] should contain the .gpkg file. I run the following tests to
# benchmark the two approaches (i.e. read from .pbf and from .gpkg files)
# and I noticed that it's much faster to read from the .gpkg file:
# oe_get("London", download_only = TRUE)
# bench::mark(
# {pbf = oe_get_keys(oe_find("London", return_gpkg = FALSE))},
# {gpkg = oe_get_keys(oe_find("London", return_pbf = FALSE))},
# iterations = 5L
# )
# Therefore, I try to prefer the .gpkg files. The only problem is that
# some of the keys might be excluded from the other-tags field in a .gpkg
# file, so I will add a warning message.
zone = zone[1L]
}
}
if (tools::file_ext(zone) %!in% c("gpkg", "pbf", "osm")) {
oe_stop(
.subclass = "oe_get_keys-fileMustHavePbfGpkgExtension",
message = "The input file must have .pbf or .gpkg extension"
)
}
# Check that the selected file contains the selected layer
if (layer %!in% sf::st_layers(zone)[["name"]]) {
oe_stop(
.subclass = "oe_get_keys-missingLayerSelected",
message = paste0(
"The matched file does not contain the selected layer. ",
"You can add it running oe_get() with layer = ",
dQuote(layer, q = FALSE), ". ",
"Check also the examples in the docs."
)
)
}
# Check that the input file contains the other_tags field
# See also https://github.com/ropensci/osmextract/issues/158
# Moreover, starting from sf 1.0.2, sf::st_read raises a warning message when
# both layer and query arguments are set (while it raises a warning in sf <
# 1.0.2 when there are multiple layers and the layer argument is not set).
# See also https://github.com/r-spatial/sf/issues/1444
existing_fields = colnames(
my_st_read(
dsn = zone,
layer = layer,
quiet = TRUE,
query = paste0("SELECT * FROM ", layer, " LIMIT 0")
)
)
if ("other_tags" %!in% existing_fields) {
oe_stop(
.subclass = "oe_get_keys-matchedFileMustHaveOtherTagsFields",
message = paste0(
"The matched file must have an other_tags field.",
" You may need to rerun the vectortranslate process."
)
)
}
# The following manual fields were included since they are also included by
# default in the output of .osm.pbf/.gpkg files returned by st_read().
# osm_way_id is used only by multipolyons layer while z_order is used only by
# lines layer.
default_fields <- c(
"osm_id", "osm_way_id", "other_tags", "geometry", "z_order",
"_ogr_geometry_",
# NB: "_ogr_geometry_" may be returned when reading 0 features from a pbf
# file. For example
# system.file("its-example.osm.pbf", package = "osmextract") |>
# sf::st_read(quiet = TRUE, query = "SELECT * FROM lines LIMIT 0")
get_fields_default(layer)
)
if (any(existing_fields %!in% default_fields)) {
warning(
"The following keys were already extracted from the other_tags field: ",
paste0(setdiff(existing_fields, default_fields), collapse = " - "), ". ",
"You can reset them running oe_get(...) with ",
"force_vectortranslate = TRUE.",
call. = FALSE
)
}
# Read the gpkg or pbf file selecting only the other_tags column.
# Moreover, starting from sf 1.0.2, sf::st_read raises a warning message when
# both layer and query arguments are set (while it raises a warning in sf <
# 1.0.2 when there are multiple layers and the layer argument is not set).
# See also https://github.com/r-spatial/sf/issues/1444
obj = my_st_read(
dsn = zone,
layer = layer,
quiet = TRUE,
query = paste0("select other_tags from ", layer)
)
get_keys(obj[["other_tags"]], values = values, which_keys = which_keys)
}
#' @name oe_get_keys
#' @export
oe_get_keys.sf = function(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()
) {
if ("other_tags" %!in% names(zone)) {
oe_stop(
.subclass = "oe_get_keys-inputMustHaveOtherTagsField",
message = "The input object must have an other_tags field."
)
}
get_keys(zone[["other_tags"]], values = values, which_keys = which_keys)
}
# The following is an internal function used to extract the keys and the values
get_keys = function(text, values = FALSE, which_keys = NULL) {
# 0. Preprocess the text input and remove all "\n". See
# https://github.com/ropensci/osmextract/pull/202#issuecomment-846077516
text = gsub("\n", "", text)
# 1. Define regexp for keys and search for matches
regexp_keys = gregexpr(
# The other_tags field uses the following structure:
# "KEY1"=>"VALUE1","KEY2"=>"VALUE2" and so on
# The following regex should match all characters that:
# 1. Follow ^" or ," (where ^ denotes the start of a line)
# and
# 2. Precede the character "=>" (i.e. the delimiter)
pattern = '(?<=^\\"|\\",\\").+?(?=\\"=>\\")',
text = text,
perl = TRUE
)
# 2. Extract the keys
keys = regmatches(text, regexp_keys)
# Clean
rm(regexp_keys); gc(verbose = FALSE)
# 3. If values is FALSE, then just return the (unique and sorted) keys
if (isFALSE(values)) {
keys = unlist(keys)
nums = sort(table(keys), decreasing = TRUE)
keys = factor(keys, levels = names(nums))
return(levels(keys))
}
# 4. Otherwise, we need to extract the values. I will use a regex that is
# analogous to the previous query (inverting the lookahead and lookbehind)
regexp_values = gregexpr(
pattern = '(?<=(\\"=>\\")).*?(?=\\"$|\\",\\"|,\\")',
text = text,
perl = TRUE
)
# 5. Extract the values
values = regmatches(text, regexp_values)
# Clean
rm(regexp_values); gc(verbose = FALSE)
# 6. Check that each key corresponds to a value
if (!all(lengths(keys) == lengths(values))) {
oe_stop(
.subclass = "get_keys_lengthKeysNELengthValues",
message = paste0(
"There are more keys than values (or vice-versa). ",
"This should not happen.",
"Please raise a new issue at https://github.com/ropensci/osmextract"
)
)
}
# 7. Unlist and sort the two objects
keys = unlist(keys)
values = unlist(values)
nums = sort(table(keys), decreasing = TRUE)
keys = factor(keys, levels = names(nums))
# 8. Nest the two objects
nested_key_values = split(values, keys)
# Clean
rm(keys, values); gc(verbose = FALSE)
# 9. If which_kyes is not NULL, then filter only the corresponding keys
if (!is.null(which_keys)) {
idx = names(nested_key_values) %in% which_keys
nested_key_values = nested_key_values[idx]
}
# 10. The object nested_key_values is a nested list. Unfortunately, the
# default printing method is quite difficult to understand. Hence, I will
# assign a new class and define a new printing method.
structure(
nested_key_values,
class = c("oe_key_values_list", class(nested_key_values)),
nfeatures_OSM = length(text)
)
}
#' @name oe_get_keys
#' @param x object of class `oe_key_values_list`
#' @param n Maximum number of keys (and corresponding values) to print; can be
#' set globally by `options(oe_max_print_keys=...)`. Default value is 10.
#' @export
print.oe_key_values_list = function(x, n = getOption("oe_max_print_keys", 10L), ...) {
# Extract nfeatures_OSM
nfeatures_OSM = attr(x, "nfeatures_OSM")
# Truncate the top n elements
print_truncated = FALSE
total_length = length(x)
x_truncated = x
if (length(x) > n) {
x_truncated = x[seq_len(n)]
print_truncated = TRUE
}
# Percentages of NA(s)
perc_NA = (1 - lengths(x_truncated) / nfeatures_OSM) * 100
# Process each key and create a table-like format for the values
x_truncated = lapply(
X = x_truncated,
FUN = function(values) {
tab = sort(table(values), decreasing = TRUE)
paste(paste0("#", names(tab)), tab, sep = " = ", collapse = "; ")
}
)
# The output is like list(key1 = "#value1 = n1; #value2 = n2;...").
# Extract the names of all keys (since I want to create an output like key =
# {table of values} and I'm not sure how to extract the keys inside the for
# loop)
keys = names(x_truncated)
# Extract the page-width (i.e. the number of chars used by the console). I
# don't want to print an output which is too long for the given console.
my_width = getOption("width")
# First, print a super short summary
cat("Found", total_length, "unique keys, printed in ascending order of % NA values. ")
if (print_truncated) {
cat("The first", length(x_truncated), "keys are: \n")
} else {
cat("\n")
}
# Then, print the output using a for loop. I think that nobody wants to print
# hundreds of thousands of keys, so this shouldn't be a bottleneck.
for (i in seq_len(min(n, length(x)))) {
# As written before, I want to create an output like:
# key = {#value1 = n1; #value2 = n2; ...}
# so I start printing the ith key and the opening curly bracket
cat(keys[i], paste0("(", sprintf("%1.0f%%", floor(perc_NA[i])), " NAs)"), "= {")
# Then I need to check the number of characters of the string that
# summarises the values corresponding to the ith key. The object
# width_keys_and_brackets counts the number of characters taken my the ith
# key, the opening and clonsing curly brackets and the ...
width_keys_and_brackets = nchar(encodeString(keys[i]), type = "width") + 15
# If nchar(encodeString(x[[i]])) is longer than the available number of
# characters, i.e. my_width - width_keys_and_brackets, then I need to
# truncate the output.
if (nchar(encodeString(x_truncated[[i]])) > my_width - width_keys_and_brackets) {
cat(paste0(strtrim(x_truncated[[i]], my_width - width_keys_and_brackets - 2), "..."))
} else {
cat(x_truncated[[i]])
}
# Print the closing bracket
cat("}\n")
}
if (print_truncated) cat("[Truncated output...]")
# Return
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.