Nothing
#' Constructs a confidence interval for the
#' ordinal skewness (block distance)
#'
#' \code{ci_ordinal_skewness} constructs a confidence interval for the
#' ordinal skewness (block distance)
#'
#' @param series An OTS (numerical vector with integers).
#' @param states A numeric vector containing the corresponding
#' states.
#' @param level The confidence level (default is 0.95).
#' @param temporal Logical. If \code{temporal = TRUE} (default), the interval is computed for a time series. Otherwise,
#' the interval is computed for i.i.d. data.
#' @param max_lag If \code{temporal = TRUE}, the maximum considered lag to compute the
#' estimates related to the cumulative joint probabilities.
#' @return The confidence interval.
#' @examples
#' ci_skewness <- ci_ordinal_skewness(AustrianWages$data[[100]],
#' states = 0 : 5) # Constructing a confidence interval for the
#' # ordinal skewness for one OTS in dataset AustrianWages
#' @details
#' If \code{temporal = TRUE} (default), the function constructs the confidence interval for the
#' ordinal skewness relying on Theorem 7.1.1 in \insertCite{weiss2019distance;textual}{otsfeatures}. Otherwise,
#' the interval is constructed according to Theorem 4.1 in \insertCite{weiss2019distance;textual}{otsfeatures}.
#' @encoding UTF-8
#' @author
#' Ángel López-Oriona, José A. Vilar
#' @references{
#'
#' \insertRef{weiss2019distance}{otsfeatures}
#'
#' }
#' @export
ci_ordinal_skewness <- function(series, states, level = 0.95, temporal = TRUE, max_lag = 1) {
check_ots(series)
alpha <- 1 - level
series_length <- length(series)
n_states <- length(states)
estimated_skewness <- ordinal_skewness(series, states, distance = 'Block')
vector_cp <- c_marginal_probabilities(series, states)
coeff <- 4/series_length
quantile_normal <- stats::qnorm(1 - alpha/2)
matrix_1 <- matrix(0, nrow = n_states - 1, ncol = n_states - 1)
for (i in 1 : (n_states - 1)) {
for (j in 1 : (n_states - 1)) {
matrix_1[i, j] <- vector_cp[min(i, j)] - vector_cp[i] * vector_cp[j]
}
}
a_variance <- coeff * sum(matrix_1)
a_sd <- sqrt(a_variance)
if (temporal == FALSE) {
lower_bound <- estimated_skewness - quantile_normal * a_sd
upper_bound <- estimated_skewness + quantile_normal * a_sd
return_df <- data.frame(lower_bound, upper_bound)
colnames(return_df) <- c('Lower bound', 'Upper bound')
return(return_df)
}
coeff_extra <- 8/series_length
vector_variance <- numeric()
for (i in 1 : max_lag) {
factor_2_prev <- matrix(0, nrow = n_states - 1,
ncol = n_states - 1)
for (j in 1 : (n_states - 1)) {
for (k in 1 : (n_states - 1)) {
matrix_jp <- c_joint_probabilities(series, i, states)
factor_2_prev[j, k] <- matrix_jp[j, k] - vector_cp[j] * vector_cp[k]
}
}
vector_variance[i] <- sum(factor_2_prev)
}
a_variance_temporal <- a_variance + coeff_extra * sum(vector_variance)
a_sd_temporal <- sqrt(a_variance_temporal)
if (temporal == TRUE) {
lower_bound <- estimated_skewness - quantile_normal * a_sd_temporal
upper_bound <- estimated_skewness + quantile_normal * a_sd_temporal
return_df <- data.frame(lower_bound, upper_bound)
colnames(return_df) <- c('Lower bound', 'Upper bound')
return(return_df)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.