Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(outerbase)
## -----------------------------------------------------------------------------
sampsize = 30
d = 3
design1d = seq(1/(2*sampsize),1-1/(2*sampsize),1/sampsize)
x = cbind(design1d,sample(design1d),sample(design1d))
y = obtest_borehole3d(x)
## -----------------------------------------------------------------------------
corf = new(covf_mat25)
## -----------------------------------------------------------------------------
xred = x[1:5,1]
print(corf$cov(xred,xred),3)
## -----------------------------------------------------------------------------
corf$hyp
## -----------------------------------------------------------------------------
corf$hyp = c(-0.5)
plot(x[,1],corf$cov(x[,1],0.5), type='l',
ylab='correlation with 0.5', xlab='input')
corf$hyp = c(-0.25)
lines(x[,1],corf$cov(x[,1],0.5), type='l')
corf$hyp = c(0)
lines(x[,1],corf$cov(x[,1],0.5), type='l')
## -----------------------------------------------------------------------------
corf1 = new(covf_mat25)
corf2 = new(covf_mat25)
corf3 = new(covf_mat25)
corf1$hyp = c(-0.5) # just setting them all to the same
corf2$hyp = c(-0.5) # hyperparameter for now
corf3$hyp = c(-0.5)
## -----------------------------------------------------------------------------
covftot = function(x1,x2){
corf1$cov(x1[,1],x2[,1])*
corf2$cov(x1[,2],x2[,2])*
corf3$cov(x1[,3],x2[,3])
}
cormattot = covftot(x,x) #total correlation matrix
## -----------------------------------------------------------------------------
testsampsize = 1000
xtest = matrix(runif(testsampsize*d),ncol=d)
## -----------------------------------------------------------------------------
yhat = covftot(xtest,x) %*% solve(cormattot,y)
## ----fig.show="hold", out.width="45%", fig.width=4, fig.height=4--------------
ytest = obtest_borehole3d(xtest)
plot(yhat, ytest, ylab="actual", xlab="prediction")
hist(ytest-yhat, main="test residuals",
xlab = "test residuals")
## -----------------------------------------------------------------------------
sigma2hat = as.double(t(y)%*% solve(cormattot,y)/length(y))
varpred = sigma2hat*(covftot(xtest,xtest)-t(covftot(x,xtest))%*%
solve(cormattot,covftot(x,xtest)))
hist((ytest-yhat)/sqrt(diag(varpred)),
main="standarized test residuals",
xlab = "standarized test residuals")
## -----------------------------------------------------------------------------
om = new(outermod)
## -----------------------------------------------------------------------------
setcovfs(om, rep("mat25",3))
## -----------------------------------------------------------------------------
knotlist = list(seq(0,1,by=0.025),
seq(0,1,by=0.025),
seq(0,1,by=0.025))
setknot(om, knotlist)
## -----------------------------------------------------------------------------
gethyp(om)
om$updatehyp(c(-0.5,-0.5,-0.5))
gethyp(om)
## -----------------------------------------------------------------------------
ob = new(outerbase,
om, # an outermod (reference only)
x) # an input matrix
## -----------------------------------------------------------------------------
basis_func = ob$getbase(1)
matplot(x[,1],basis_func[,1:4],
type='l', ylab="func", xlab="first dim")
## -----------------------------------------------------------------------------
p = 60
terms = om$selectterms(p) # 60 by 3 matrix
head(terms)
## -----------------------------------------------------------------------------
covcoeff = as.vector(om$getvar(terms))
## -----------------------------------------------------------------------------
basismat = ob$getmat(terms)
termno = 5
basevec = ob$getbase(1)[,terms[termno,1]+1]*
ob$getbase(2)[,terms[termno,2]+1]*
ob$getbase(3)[,terms[termno,3]+1]
cbind(basevec[1:5],basismat[1:5,5]) # expect equal
## -----------------------------------------------------------------------------
cormatob = basismat%*%diag(covcoeff)%*%t(basismat)
print(round(cormattot[1:5,1:5],3)) # typical gp
print(round(cormatob[1:5,1:5],3)) # outerbase
## -----------------------------------------------------------------------------
noisevar = 10^(-4)
#posterior precision matrix of coefficients
postcov = solve(1/noisevar*t(basismat)%*%basismat+
1/sigma2hat*diag(1/covcoeff))
#posterior mean of coefficients
coeffest = postcov%*%(1/noisevar*t(basismat)%*%y)
## -----------------------------------------------------------------------------
obtest = new(outerbase,
om, # same outermod
xtest) # new input matrix
basistest = obtest$getmat(terms)
## ----fig.show="hold", out.width="45%", fig.width=4, fig.height=4--------------
yhatob = basistest%*%coeffest
plot(yhat, ytest, main="typical gp",
xlab="prediction", ylab="actual")
plot(yhatob, ytest, main = "outerbase equiv.",
xlab="prediction", ylab="actual")
## ----fig.show="hold", out.width="45%", fig.width=4, fig.height=4--------------
hist(ytest-yhat, main="typical gp",
xlab="test residuals")
hist(ytest-yhatob, main="outerbase equiv.",
xlab="test residuals")
## ----fig.show="hold", out.width="45%", fig.width=4, fig.height=4--------------
varpredob = basistest%*%postcov%*%t(basistest)
hist((ytest-yhat)/sqrt(diag(varpred)), main="typical gp",
xlab="standarized test residuals")
hist((ytest-yhatob)/sqrt(diag(varpredob)), main="outerbase equiv.",
xlab="standarized test residuals")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.