pROC: Display and Analyze ROC Curves

Tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves). (Partial) area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.

Package details

AuthorXavier Robin [cre, aut] (<https://orcid.org/0000-0002-6813-3200>), Natacha Turck [aut], Alexandre Hainard [aut], Natalia Tiberti [aut], Frédérique Lisacek [aut], Jean-Charles Sanchez [aut], Markus Müller [aut], Stefan Siegert [ctb] (Fast DeLong code), Matthias Doering [ctb] (Hand & Till Multiclass), Zane Billings [ctb] (DeLong paired test CI)
MaintainerXavier Robin <pROC-cran@xavier.robin.name>
LicenseGPL (>= 3)
Version1.18.5
URL https://xrobin.github.io/pROC/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("pROC")

Try the pROC package in your browser

Any scripts or data that you put into this service are public.

pROC documentation built on Nov. 2, 2023, 6:05 p.m.