pairwise.S | R Documentation |
This function calculates the S-statistic on item level proposed by Fischer and Scheiblechner (1970) on item level for dicho- or polytomous item response formats by splitting the data into two subsamples. For polytomous Items the test is performed on item category level. Several splitting options are available (see arguments). The S-statistic is also mentioned in van den Wollenberg, (1982) – an article in Psychometrika, which might be available more easily (see details).
pairwise.S(
daten,
m = NULL,
split = "random",
splitseed = "no",
verbose = FALSE,
...
)
daten |
a data.frame or matrix with optionaly named colums (names of items), potentially with missing values, comprising polytomous or dichotomous (or mixed category numbers) responses of |
m |
an integer (will be recycled to a vector of length k) or a vector giving the number of response categories for all items - by default |
split |
Specifies the splitting criterion. Basically there are three different options available - each with several modes - which are controlled by passing the corresponding character expression to the argument. 1) Using the rawscore for splitting into subsamples with the following modes: 2) Dividing the persons in 3) The third option is using a manifest variable as a splitting criterion. In this case a vector with the same length as number of cases in |
splitseed |
numeric, used for |
verbose |
logical, if |
... |
additional arguments |
The data is splitted in two subsamples and then item thresholds, the parameter (Sigma) and their standard errors (SE) for the items according the PCM (or RM in case of dichotonimies) are calculated for each subsample. This function internaly calls the function pairSE
. Additional arguments (see description of function pairSE
) for parameter calculation are passed through.
This item fit statistic is also (perhaps misleadingly) namend as 'Wald test' in other R-packages. The S-statistic, as implemented in pairwise
, is defined according to Fischer and Scheiblechner (1970); see also equation (3) in van den Wollenberg, (1982), p. 124 in the following equation:
{ S }_{ i }=\frac { { \hat { \sigma } }^{ (1) }_{ i }-{ \hat { \sigma } }^{ (2) }_{ i } }{ \sqrt { { \left( { { S } }^{ (1) }_{ \hat { \sigma } _{ i } } \right) }^{ 2 }+{ \left( { { S } }^{ (2) }_{ \hat { \sigma } _{ i } } \right) }^{ 2 } } }
where {\hat { \sigma } }^{ (1) }_{ i }
is the estimate of the item parameter of subsample 1, {\hat { \sigma } }^{ (2) }_{ i }
is the estimate of the item parameter of subsample 2 and { S }^{ (1) }_{ \hat { \sigma } _{ i } }
and { S }^{ (2) }_{ \hat { \sigma } _{ i } }
are the respective standard errors.
In Fischer (1974), p. 297, the resulting test statistic (as defined above) is labeled with Z_i
, as it is asymtotically normally distributed. Contrary to the 'Wald-type' test statistic W_i
, which was drived by Glas and Verhelst (2005) from the (general) \chi^2
distributed test of statistical hypotheses concerning several parameters, which was introduced by Wald (1943).
A (list) object of class "pairS"
containing the test statistic and item difficulty parameter sigma and their standard errors for the two or more subsamples.
Estimation of standard errors is done by repeated calculation of item parameters for subsamples of the given data. This procedure is mainly controlled by the arguments nsample
and size
(see arguments in pairSE
). With regard to calculation time, the argument nsample
is the 'time killer'. On the other hand, things (estimation of standard errors) will not necessarily get better when choosing large values for nsample
. For example choosing nsample=400
will only result in minimal change for standard error estimation in comparison to (nsample=30
) which is the default setting (see examples).
description of function pairSE
{pairwise}
.
Fischer, G. H., & Scheiblechner, H. (1970). Algorithmen und Programme fuer das probabilistische Testmodell von Rasch. Psychologische Beitrage, (12), 23–51.
van den Wollenberg, A. (1982). Two new test statistics for the rasch model. Psychometrika, 47(2), 123–140. https://doi.org/10.1007/BF02296270
Glas, C. A. W., & Verhelst, N. D. (1995). Testing the Rasch Model. In G. Fischer & I. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications. New York: Springer.
Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54(3), 426–482. https://doi.org/10.1090/S0002-9947-1943-0012401-3
Fischer, G. H. (1974). Einführung in die Theorie psychologischer Tests. Bern: Huber.
##########
data("kft5")
S_ran_kft <- pairwise.S(daten = kft5,m = 2,split = "random")
summary(S_ran_kft)
summary(S_ran_kft,thres = FALSE)
#### polytomous examples
data(bfiN) # loading example data set
data(bfi_cov) # loading covariates to bfiN data set
# calculating itemparameters and SE for two subsamples by gender
S_gen <- pairwise.S(daten=bfiN, split = bfi_cov$gender)
summary(S_gen)
summary(S_gen,thres = FALSE)
# other splitting criteria
## Not run:
S_med <- pairwise.S(daten=bfiN, split = "median")
summary(S_med)
S_ran<-pairwise.S(daten=bfiN, split = "random")
summary(S_ran)
S_ran.4<-pairwise.S(daten=bfiN, split = "random.4")
summary(S_ran.4) # currently not displayed
###### example from details section 'Some Notes on Standard Errors' ########
S_def<-pairwise.S(daten=bfiN, split = "random",splitseed=13)
summary(S_def)
######
S_400<-pairwise.S(daten=bfiN, split = "random", splitseed=13 ,nsample=400)
summary(S_400)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.