pers | R Documentation |
This is the (new) main function for calculation of person estimates based on answering dichotomous or polytomous items according theRasch Model (Rasch, 1960) and Partial Credit Model (Masters, 1982), given the item parameters (object of class "pair"
- as a result of pair()
) and and the datamatrix (argument daten
) containing the person respose vectors (rows), using an WL approach, introduced by Warm (1989).
pers(
itempar,
daten = NULL,
incidenz = NULL,
na_treat = NULL,
limit = 1e-05,
iter = 50,
Nrel = FALSE,
tecout = FALSE
)
itempar |
The item parameter prior calculated or estimated. A list object of class |
daten |
A |
incidenz |
This argument is only relevant when items are assigned to different booklets. For such a booklet-design a |
na_treat |
optionaly an integer (vector) defining the type of treatment to missing responses in the argument |
limit |
numeric giving the limit at which accuracy the WL-algorithm stops. |
iter |
numeric giving the maximum numer of iteration to perform. |
Nrel |
logical with default set to |
tecout |
logical default set to |
no detail in the moment.
An object of class c("pers", "data.frame")
or a (very long) "list"
(when setting on techout=TRUE
) containing the person parameters.
Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danmarks pædagogiske Institut.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427–450.
############
data(sim200x3)
result <- pers(itempar=pair(sim200x3))
summary(result)
plot(result)
logLik(result) # Log-Likelihood for 'estimated' model
logLik(result, sat=TRUE) # Log-Likelihood for saturated model
AIC(logLik(result)) # AIC for 'estimated' model
AIC(logLik(result, sat=TRUE)) # AIC for saturated model
BIC(logLik(result)) # BIC for 'estimated' model
BIC(logLik(result, sat=TRUE)) # BIC for saturated model
###### following example requires package eRm ######
# require(eRm)
# # itemparameter with eRm:
# itempar_eRm <- thresholds(PCM(sim200x3))$ threshtable[[1]][,2:3]
# # pairwise personparameter with eRm-itemparameter and data:
# summary(pers(itempar=itempar_eRm,daten=sim200x3))
# # eRm personparameter:
# person.parameter(PCM(sim200x3))
# # personparameter with pairwise:
# summary(pers(pair(sim200x3)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.