Nothing
##' Contacts model
##'
##' A panel model for dynamic variation in sexual contacts, with
##' data from Vittinghof et al (1999). The model was developed by
##' Romero-Severson et al (2015) and discussed by \Breto et al (2020).
##'
##' @param params parameter vector.
##' @return
##' A \code{panelPomp} object.
##'
##' @author Edward L. Ionides
##'
##' @examples
##' \donttest{
##' contacts()
##' }
##' @export
##'
##' @references \breto2020
##'
##' \romeroseverson2015
##'
##' \vittinghoff1999
##' @family panelPomp examples
contacts <- function(params=c(mu_X=1.75,sigma_X=2.67,mu_D=3.81,
sigma_D=4.42,mu_R=0.04,sigma_R=0,alpha=0.90)){
contact_data <- read.table(
text = '"y1" "y2" "y3" "y4" "individual"
5 0 0 0 1
2 2 31 4 2
9 2 0 0 3
12 8 10 6 4
0 10 4 1 5
25 23 15 2 6
12 6 0 0 7
10 2 0 4 8
31 58 24 48 9
0 0 0 0 10
32 42 9 1 11
5 4 12 2 12
0 1 0 1 13
2 0 3 0 14
1 3 0 0 15
92 40 7 5 16
3 0 1 10 17
2 4 3 3 18
5 1 3 2 19
18 1 22 2 20
0 12 12 11 21
5 9 15 19 22
20 10 0 0 23
1 0 0 6 24
9 8 5 6 25
17 7 10 10 26
0 1 0 3 27
0 3 13 5 28
15 16 12 8 29
9 0 1 1 30
0 1 0 0 31
15 5 9 0 32
0 25 0 0 33
75 59 45 30 34
160 34 40 145 35
2 0 0 4 36
2 0 26 3 37
4 0 0 0 38
4 11 2 0 39
2 1 4 1 40
15 2 0 0 41
150 30 49 22 42
0 0 0 0 43
2 10 3 2 44
2 0 0 0 45
58 23 6 4 46
0 0 1 0 47
12 15 14 8 48
0 0 0 0 49
3 5 6 15 50
15 7 0 4 51
1 3 0 3 52
0 2 3 6 53
0 0 0 0 54
13 7 13 10 55
2 2 2 0 56
0 0 0 0 57
33 17 2 0 58
0 2 15 8 59
0 0 0 0 60
4 7 4 4 61
5 1 2 0 62
1 2 14 13 63
14 13 1 8 64
12 3 0 0 65
0 6 2 0 66
4 0 0 0 67
0 0 0 0 68
6 6 3 3 69
60 75 10 13 70
2 4 2 2 71
113 23 24 12 72
8 127 99 45 73
3 1 4 13 74
60 31 10 35 75
1 1 20 7 76
3 1 0 0 77
0 0 0 0 78
4 3 0 3 79
0 0 0 0 80
1 0 0 2 81
23 10 1 2 82
0 0 2 0 83
3 0 5 5 84
5 0 0 0 85
0 0 0 0 86
15 2 6 7 87
14 1 0 0 88
0 78 52 4 89
4 7 1 1 90
4 4 0 2 91
3 4 1 2 92
5 40 1 52 93
15 0 6 0 94
0 2 6 0 95
23 10 4 3 96
7 25 51 3 97
16 30 5 1 98
10 2 0 0 99
0 1 0 4 100
10 22 11 3 101
2 0 0 0 102
0 0 0 0 103
55 13 0 11 104
0 3 8 3 105
27 2 1 13 106
10 4 5 14 107
16 3 1 1 108
3 3 1 11 109
4 2 25 0 110
21 15 16 32 111
11 0 0 0 112
10 9 22 11 113
6 10 2 72 114
6 3 6 4 115
3 1 5 2 116
8 8 7 12 117
1 1 0 0 118
0 0 0 0 119
236 101 26 32 120
0 2 1 18 121
0 0 0 0 122
91 0 0 0 123
10 13 4 2 124
0 1 0 0 125
2 7 3 4 126
0 0 2 0 127
27 35 15 16 128
0 0 0 0 129
7 10 3 0 130
0 0 0 0 131
0 0 0 0 132
3 2 2 3 133
1 0 0 8 134
1 0 0 0 135
5 103 8 2 136
1 6 2 2 137
17 30 98 40 138
9 0 0 0 139
0 0 0 0 140
10 6 4 19 141
103 44 45 80 142
50 3 0 0 143
0 1 7 0 144
4 1 5 4 145
10 15 6 6 146
33 46 105 96 147
0 0 0 0 148
0 0 0 0 149
4 0 0 0 150
0 0 0 0 151
0 0 0 0 152
0 0 0 0 153
6 6 8 12 154
20 3 21 5 155
0 0 0 0 156
0 10 0 2 157
1 0 0 1 158
1 12 6 0 159
6 1 1 1 160
0 0 0 0 161
31 31 15 5 162
72 43 56 61 163
0 0 0 0 164
0 3 0 0 165
10 37 25 2 166
20 17 19 2 167
5 6 6 11 168
12 0 0 0 169
22 58 5 4 170
1 23 14 0 171
25 2 9 4 172
0 0 0 1 173
0 0 0 0 174
4 4 5 2 175
2 4 0 8 176
4 4 0 0 177
15 26 30 26 178
2 12 2 0 179
22 3 9 58 180
0 0 0 0 181
4 5 3 1 182
14 50 29 0 183
6 3 1 1 184
2 2 1 1 185
4 0 5 1 186
37 57 20 9 187
31 1 0 0 188
2 6 11 3 189
54 12 3 4 190
32 17 6 2 191
3 0 1 2 192
13 0 3 9 193
3 30 2 1 194
0 0 0 0 195
0 0 0 0 196
69 0 0 0 197
1 1 1 0 198
36 30 22 80 199
0 0 0 0 200
2 2 60 84 201
44 0 0 2 202
0 0 0 1 203
0 11 31 4 204
2 1 0 4 205
5 11 18 17 206
33 45 6 15 207
34 18 60 54 208
0 0 0 0 209
0 0 0 0 210
17 20 45 6 211
0 0 11 6 212
6 0 0 0 213
0 11 2 5 214
4 6 2 3 215
9 11 10 14 216
9 0 0 0 217
1 4 1 1 218
5 5 1 2 219
1 5 3 2 220
4 0 70 6 221
0 0 0 0 222
9 0 0 9 223
0 0 0 0 224
5 2 3 2 225
1 2 22 14 226
0 2 3 3 227
5 4 3 2 228
3 1 0 0 229
1 0 0 0 230
0 1 4 2 231
12 8 18 3 232
0 6 18 10 233
4 0 12 4 234
46 80 71 33 235
5 0 1 1 236
2 10 0 3 237
3 7 6 9 238
6 0 0 0 239
7 1 14 2 240
30 9 4 8 241
16 5 54 76 242
12 5 0 0 243
6 3 2 2 244
3 2 3 1 245
7 14 13 3 246
50 134 4 51 247
0 0 0 0 248
19 0 0 0 249
0 0 0 0 250
15 10 3 1 251
2 0 0 1 252
5 0 0 1 253
13 38 17 23 254
0 7 1 0 255
8 1 3 1 256
33 5 29 41 257
10 1 2 4 258
18 54 30 20 259
0 0 0 0 260
43 43 3 0 261
2 0 0 0 262
0 0 0 0 263
7 2 0 7 264
0 2 0 0 265
1 0 0 0 266
3 4 5 8 267
3 4 3 1 268
33 26 16 17 269
6 2 16 4 270
0 3 4 5 271
10 10 3 9 272
8 10 8 7 273
0 0 0 1 274
4 9 0 0 275
27 26 21 5 276
12 2 2 0 277
1 12 4 3 278
16 2 0 0 279
27 0 0 0 280
15 14 10 9 281
2 2 5 5 282
0 0 7 0 283
15 8 19 1 284
9 2 2 0 285
10 30 12 15 286
0 0 0 0 287
0 3 3 12 288
47 47 17 2 289
0 8 0 0 290
2 0 0 0 291
2 0 0 26 292
64 21 10 5 293
12 100 30 1 294
0 0 0 0 295
35 18 13 10 296
3 9 6 10 297
0 0 0 0 298
0 4 0 0 299
24 30 12 10 300
0 0 0 0 301
3 0 0 0 302
4 9 4 27 303
7 11 1 14 304
1 1 0 0 305
1 1 0 2 306
41 6 17 27 307
47 0 0 0 308
0 1 4 7 309
23 31 11 4 310
0 1 0 1 311
0 0 0 0 312
3 1 2 2 313
5 11 3 16 314
3 1 0 0 315
3 2 5 0 316
0 0 0 0 317
17 0 0 0 318
9 3 1 0 319
5 5 8 9 320
1 0 3 0 321
1 0 0 0 322
14 8 20 18 323
0 7 3 10 324
5 3 8 25 325
2 2 0 3 326
2 0 1 2 327
2 4 0 3 328
4 3 5 5 329
47 0 4 7 330
3 2 4 4 331
1 0 0 0 332
29 1 46 4 333
55 48 53 146 334
0 18 15 4 335
3 1 0 0 336
6 0 1 0 337
6 1 10 8 338
0 1 3 53 339
3 7 9 2 340
0 0 0 0 341
4 4 83 51 342
0 0 1 4 343
35 33 31 0 344
11 3 3 8 345
94 0 15 19 346
19 17 20 8 347
2 4 0 0 348
12 27 15 13 349
24 3 8 25 350
161 0 40 7 351
0 0 1 0 352
3 6 17 0 353
28 19 0 16 354
1 1 10 0 355
15 2 0 0 356
34 76 138 45 357
0 0 0 0 358
0 0 2 11 359
0 0 0 0 360
0 0 0 0 361
15 10 3 10 362
1 4 1 3 363
0 4 0 0 364
10 46 3 4 365
1 52 1 0 366
7 1 0 4 367
3 11 0 0 368
6 10 0 0 369
17 27 34 32 370
2 9 7 2 371
18 2 0 4 372
0 0 0 1 373
72 104 0 0 374
0 0 3 0 375
39 22 15 33 376
37 29 0 0 377
0 0 0 0 378
15 3 8 17 379
0 0 0 1 380
2 6 10 7 381
27 16 15 19 382
2 7 1 19 383
0 10 1 17 384
6 6 6 13 385
1 0 1 0 386
11 0 0 0 387
8 12 10 18 388
0 0 0 0 389
0 0 0 0 390
15 16 1 4 391
0 1 1 0 392
2 0 0 0 393
1 4 1 1 394
5 2 4 4 395
1 0 1 3 396
0 0 0 0 397
7 13 8 13 398
0 0 0 60 399
8 17 28 44 400
2 11 1 12 401
2 0 0 0 402
15 14 75 25 403
14 94 2 9 404
2 5 2 3 405
20 0 0 0 406
4 0 5 3 407
1 6 2 1 408
0 0 0 0 409
0 0 0 0 410
0 0 0 0 411
38 18 7 0 412
27 1 0 0 413
2 7 27 6 414
61 0 0 0 415
6 1 7 2 416
0 0 0 0 417
5 11 17 9 418
0 0 0 0 419
6 1 0 2 420
0 0 0 4 421
50 21 1 16 422
0 0 0 0 423
0 0 4 0 424
0 5 2 0 425
5 8 13 16 426
0 0 0 0 427
8 16 19 5 428
25 0 0 0 429
0 2 5 3 430
4 4 10 1 431
2 20 21 17 432
0 2 0 2 433
24 25 52 14 434
35 20 21 37 435
3 0 0 0 436
0 0 0 9 437
3 18 5 8 438
13 7 0 0 439
0 12 12 0 440
9 5 3 3 441
105 105 53 50 442
5 13 8 6 443
0 0 0 0 444
0 0 225 0 445
0 5 2 3 446
11 12 11 8 447
12 1 0 0 448
1 0 0 0 449
0 1 51 15 450
5 1 9 8 451
14 10 8 16 452
8 23 70 0 453
4 13 18 0 454
2 0 1 0 455
0 0 4 0 456
10 3 0 0 457
3 5 3 1 458
30 65 28 75 459
0 0 0 0 460
2 0 2 0 461
1 4 16 13 462
0 1 0 1 463
2 0 0 0 464
16 16 7 0 465
2 0 6 0 466
0 0 2 0 467
15 3 25 27 468
0 0 0 0 469
125 41 35 67 470
8 1 3 1 471
26 15 123 32 472
0 0 0 0 473
4 0 0 0 474
12 6 0 0 475
4 3 2 0 476
12 1 3 2 477
8 14 18 9 478
3 5 4 35 479
15 20 26 11 480
0 0 0 1 481
1 0 3 6 482
0 0 0 0 483
4 4 4 1 484
1 0 0 0 485
39 76 33 2 486
0 0 30 4 487
40 0 1 19 488
5 29 4 10 489
0 0 0 2 490
10 5 7 8 491
4 2 2 0 492
1 6 2 1 493
18 4 12 22 494
2 1 0 0 495
0 0 0 28 496
5 0 0 15 497
4 1 8 15 498
0 0 0 0 499
0 0 0 0 500
3 0 0 0 501
0 0 0 0 502
2 3 1 1 503
15 1 11 0 504
2 2 4 3 505
20 10 24 0 506
11 35 5 2 507
0 0 0 0 508
7 0 0 9 509
10 13 5 14 510
0 0 0 0 511
1 2 2 4 512
2 0 0 3 513
6 1 13 0 514
1 0 2 1 515
9 7 3 14 516
0 0 0 0 517
3 4 3 5 518
0 0 0 0 519
4 15 14 42 520
0 0 0 0 521
4 0 0 0 522
0 1 0 0 523
41 0 3 0 524
0 4 0 0 525
13 3 1 2 526
19 1 8 6 527
10 21 14 15 528
0 10 57 0 529
0 3 1 0 530
6 1 1 9 531
0 6 1 1 532
9 0 4 7 533
0 0 1 0 534
1 4 0 0 535
4 6 3 6 536
4 0 6 20 537
3 0 1 9 538
8 4 16 18 539
2 5 4 2 540
21 31 24 37 541
3 2 1 1 542
0 0 0 0 543
26 23 20 12 544
3 5 9 7 545
0 25 20 3 546
2 5 5 7 547
1 52 52 22 548
15 4 8 5 549
1 2 4 2 550
0 0 0 0 551
7 20 21 16 552
0 0 0 0 553
4 0 0 0 554
34 6 7 2 555
7 5 0 37 556
106 20 4 0 557
0 1 2 0 558
2 0 0 2 559
1 0 1 13 560
37 0 10 9 561
3 2 0 0 562
27 2 0 2 563
2 0 0 0 564
3 9 3 1 565
3 1 0 0 566
40 10 7 45 567
0 0 0 0 568
24 25 17 25 569
4 0 5 144 570
17 14 6 1 571
6 52 1 2 572
14 5 26 4 573
3 1 1 1 574
0 0 1 2 575
5 0 0 0 576
2 0 0 0 577
3 5 4 4 578
2 1 4 9 579
3 0 0 0 580
4 1 3 0 581
7 3 3 3 582
0 1 0 0 583
10 20 14 6 584
1 1 3 2 585
4 5 1 2 586
1 1 2 2 587
52 25 0 1 588
0 0 0 0 589
17 23 1 3 590
4 2 8 1 591
5 4 7 14 592
0 0 0 0 593
1 7 10 6 594
0 0 0 0 595
0 0 18 30 596
1 0 0 0 597
16 58 3 15 598
2 1 3 1 599
0 4 1 1 600
3 12 9 20 601
38 0 0 75 602
5 1 6 7 603
0 0 0 0 604
13 4 4 1 605
4 0 0 0 606
0 22 3 41 607
2 0 87 23 608
1 0 5 1 609
1 4 0 0 610
3 1 0 0 611
24 0 0 1 612
27 40 25 26 613
0 1 5 1 614
4 7 3 20 615
14 2 6 6 616
2 5 0 1 617
1 0 5 8 618
1 16 15 33 619
0 0 0 0 620
41 3 0 0 621
1 0 1 1 622
16 5 0 0 623
0 1 1 8 624
6 1 5 2 625
3 3 3 3 626
0 0 0 62 627
1 7 4 8 628
15 2 2 2 629
46 73 2 1 630
6 24 0 0 631
3 0 5 4 632
3 5 1 1 633
15 1 15 112 634
21 6 14 4 635
86 0 0 0 636
0 7 7 7 637
3 1 1 0 638
0 0 0 0 639
2 2 18 0 640
60 39 13 6 641
3 14 11 28 642
1 2 0 1 643
8 3 6 2 644
2 9 10 0 645
3 53 75 20 646
14 1 0 0 647
13 12 9 15 648
50 20 42 50 649
3 11 18 6 650
7 4 2 1 651
5 11 5 3 652
25 6 19 30 653
2 9 80 0 654
0 0 0 0 655
1 0 0 0 656
32 21 6 5 657
0 115 379 6 658
0 0 0 0 659
0 0 0 0 660
0 0 0 0 661
1 3 3 2 662
1 2 0 4 663
2 0 0 0 664
1 3 0 0 665
10 0 8 8 666
0 0 0 0 667
10 8 9 2 668
20 4 0 0 669
0 1 1 0 670
2 65 5 1 671
12 17 21 27 672
40 0 0 0 673
0 23 3 2 674
0 19 0 4 675
0 1 3 0 676
4 0 0 0 677
1 1 1 0 678
0 0 0 0 679
9 10 7 1 680
3 0 6 4 681
4 6 14 10 682
3 1 2 35 683
5 3 13 47 684
0 0 0 0 685
0 8 2 0 686
6 0 0 0 687
2 0 0 0 688
18 3 6 0 689
0 1 0 0 690
8 10 17 5 691
4 7 7 2 692
24 75 0 0 693
0 0 0 0 694
1 0 3 42 695
64 60 0 0 696
38 0 1 0 697
0 1 7 2 698
2 2 0 0 699
0 0 0 1 700
40 52 52 3 701
1 0 0 0 702
0 0 0 2 703
7 4 2 4 704
30 10 13 11 705
0 1 0 0 706
1 0 0 0 707
45 37 0 13 708
0 0 0 0 709
25 76 60 40 710
0 6 53 2 711
4 2 2 1 712
0 0 0 0 713
54 23 23 7 714
1 1 1 2 715
34 0 0 0 716
2 11 0 2 717
1 10 7 1 718
2 0 0 1 719
15 8 5 4 720
0 0 0 0 721
37 13 0 28 722
12 0 36 1 723
6 3 3 2 724
2 3 0 2 725
0 0 0 0 726
0 0 0 0 727
2 0 2 0 728
1 0 0 0 729
0 0 0 0 730
0 0 0 0 731
10 0 2 4 732
62 0 0 0 733
3 0 0 0 734
0 0 0 0 735
31 27 19 8 736
6 50 0 0 737
5 5 3 0 738
26 12 16 6 739
0 0 0 0 740
8 3 3 5 741
10 2 10 17 742
11 9 9 16 743
0 0 0 0 744
0 0 0 0 745
4 4 1 4 746
4 6 3 12 747
8 8 11 11 748
13 17 7 6 749
5 2 0 0 750
5 0 0 0 751
4 0 0 0 752
3 0 0 0 753
0 0 0 7 754
3 1 2 3 755
7 3 14 22 756
6 6 13 2 757
2 1 2 2 758
1 0 0 1 759
54 40 13 0 760
2 0 0 1 761
76 119 84 12 762
20 24 4 24 763
0 0 0 0 764
0 0 0 0 765
0 0 0 0 766
0 8 0 12 767
0 0 0 4 768
7 0 0 0 769
0 4 0 0 770
4 1 0 0 771
2 2 0 0 772
61 4 21 13 773
24 16 25 18 774
1 7 3 4 775
268 3 15 5 776
48 0 0 0 777
0 0 0 0 778
19 13 56 40 779
12 10 18 3 780
0 0 0 0 781
0 2 0 0 782
17 4 27 25 783
1 0 0 4 784
12 11 6 11 785
0 11 0 7 786
33 29 28 24 787
15 0 19 13 788
3 2 0 0 789
0 12 39 24 790
3 8 0 1 791
6 3 14 7 792
0 0 1 1 793
53 24 34 105 794
1 5 2 0 795
0 5 4 8 796
10 6 6 3 797
51 10 5 3 798
6 10 3 22 799
0 0 0 0 800
4 31 13 1 801
4 6 5 8 802
0 0 0 0 803
13 18 12 18 804
0 4 10 7 805
25 16 6 1 806
0 0 12 0 807
3 0 1 4 808
0 0 0 0 809
10 0 0 0 810
1 0 0 0 811
277 16 10 48 812
43 12 4 5 813
0 0 0 0 814
4 2 4 0 815
13 5 7 19 816
1 2 0 10 817
0 11 0 12 818
2 7 3 6 819
3 3 0 0 820
17 1 1 1 821
0 0 0 0 822
6 7 5 59 823
67 16 28 2 824
0 0 0 0 825
0 2 0 2 826
0 0 25 12 827
10 6 3 6 828
4 0 4 0 829
214 0 2 0 830
3 2 0 1 831
3 2 4 1 832
1 0 0 1 833
7 4 3 7 834
4 4 42 18 835
8 5 10 37 836
2 0 25 0 837
3 3 1 8 838
0 0 0 3 839
120 221 5 98 840
0 2 20 2 841
10 43 80 32 842
8 5 0 0 843
2 1 6 6 844
8 1 3 3 845
1 0 0 0 846
208 0 0 0 847
13 8 5 23 848
1 15 3 0 849
19 6 7 4 850
3 1 2 2 851
0 1 0 0 852
1 2 0 0 853
3 0 4 5 854
9 38 17 12 855
0 0 2 2 856
8 13 33 22 857
0 0 4 6 858
1 0 1 0 859
0 0 1 3 860
10 5 1 0 861
13 0 0 0 862
7 2 0 2 863
15 121 4 0 864
5 14 14 2 865
6 0 0 0 866
3 3 1 1 867
1 2 1 0 868
10 1 12 5 869
20 27 5 20 870
4 10 4 2 871
0 0 1 6 872
82 20 0 0 873
0 0 0 7 874
26 2 0 6 875
2 0 0 0 876
16 40 20 12 877
0 0 3 3 878
0 2 0 0 879
7 76 86 103 880
6 3 3 1 881
0 0 0 0 882',
header = TRUE
)
dmeas <- Csnippet("lik = dnbinom(y, D, D/(D+C), give_log);")
rmeas <- Csnippet("y = rnbinom(D, D/(D+C));")
rinit <- Csnippet("
double tol=0.000001;
D = (sigma_D < tol || mu_D < tol) ? mu_D :
rgamma(pow(mu_D/sigma_D,2), pow(sigma_D,2)/mu_D);
if(D < tol) {D = tol;}
R = (sigma_R < tol || mu_R < tol) ? mu_R :
rgamma(pow(mu_R/sigma_R, 2), pow(sigma_R, 2)/mu_R);
X = (sigma_X < tol || mu_X < tol) ? mu_X :
rgamma(pow(mu_X/sigma_X, 2), pow(sigma_X, 2)/mu_X);
Z = (R < tol) ? 1/tol : rexp(1/R);
C = 0;
")
rproc <- Csnippet("
double Zcum, tol=0.000001;
C = 0;
Zcum = Z;
while(Zcum < 6){ // time in months within a 6 month observation interval
C += Z * X;
Z = (R < tol) ? 1/tol : rexp(1/R);
X = (sigma_X < tol || mu_X < tol) ? mu_X :
rgamma(pow(mu_X/sigma_X, 2), pow(sigma_X, 2)/mu_X);
Zcum += Z;
}
C += (6 - (Zcum - Z)) * X;
C *= pow(alpha, (int)t % 4);
Z = Zcum - 6;
")
# check for existing 'cdir' (to make 'testthat' package work)
cdir <- if (exists("cdir",inherits=FALSE)) cdir else NULL
template <- pomp(data=data.frame(t=1:4,y=NA),
times="t",
t0=0,
rprocess=discrete_time(step.fun=rproc,delta.t=1),
rmeasure=rmeas,
dmeasure=dmeas,
params=params,
paramnames=c("mu_X","sigma_X","mu_D","sigma_D","mu_R","sigma_R","alpha"),
statenames=c("X","D","R","C","Z"),
obsnames="y",
partrans=parameter_trans(
log=c("mu_X","sigma_X","mu_D","sigma_D"),
logit="alpha"
),
rinit=rinit,
cdir=cdir
)
## build list of pomps
U <- nrow(contact_data)
poList <- setNames(vector(mode="list",length=U),
nm=paste0("unit",1:U))
for (u in seq_len(U)) {
poList[[u]] <- template
data_u <- pomp(
data.frame(t=time(template),y=as.numeric(contact_data[u,time(template)])),
times="t",
t0=timezero(template)
)
poList[[u]]@data <- data_u@data
}
## Construct panelPomp
panelPomp(object=poList,shared=coef(template))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.