Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library("papaja")
## ----htest-example------------------------------------------------------------
t_test_example <- t.test(extra ~ group, data = sleep)
class(t_test_example)
str(t_test_example)
## ----apa-results, echo = FALSE------------------------------------------------
papaja:::init_apa_results()
## ----lm-example---------------------------------------------------------------
# Data from Dobson (1990), p. 9.
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm_fit <- lm(weight ~ group)
lm_fit_apa <- apa_print(lm_fit)
## ----estimates----------------------------------------------------------------
lm_fit_apa$estimate
## ----statistic----------------------------------------------------------------
lm_fit_apa$statistic
## ----full-result--------------------------------------------------------------
lm_fit_apa$full_result
## ----table--------------------------------------------------------------------
lm_fit_apa$table
## ----variable-labels----------------------------------------------------------
# library("tinylabels")
letters
variable_label(letters) <- "Letters of the alphabet"
variable_label(letters)
letters
str(letters)
## ----variable-label-column----------------------------------------------------
lm_fit_apa$table$statistic
## ----apa-num------------------------------------------------------------------
x <- rnorm(3) * 1e4
apa_num(x)
apa_num(x, digits = 3, big.mark = ".", decimal.mark = ",")
apa_num(Inf)
## ----apa-p--------------------------------------------------------------------
apa_p(c(0.0001, 0.05, 0.99999))
## ----apa-df-------------------------------------------------------------------
apa_df(c(12, 12.485))
apa_df(12L)
## ----apa-interval-------------------------------------------------------------
apa_interval(rnorm(2), conf.int = 0.95, interval_type = "CI")
## ----apa-confint--------------------------------------------------------------
apa_confint(rnorm(2), conf.int = 0.95)
apa_hdint(rnorm(2), conf.int = 0.95)
## ----sanitize-terms-----------------------------------------------------------
mod_terms <- c("(Intercept)", "Factor A", "Factor B",
"Factor A:Factor B", "scale(Factor A)")
sanitize_terms(mod_terms, standardized = TRUE)
## ----prettify-terms-----------------------------------------------------------
beautify_terms(mod_terms, standardized = TRUE)
## ----aov-fit------------------------------------------------------------------
npk_aov <- aov(yield ~ block + N * P * K, npk)
npk_aov
summary(npk_aov)
## ----apa-print-aov------------------------------------------------------------
papaja:::apa_print.aov
## ----tidy-results-------------------------------------------------------------
lm_fit <- lm(mpg ~ cyl + wt, mtcars)
# Tidy and typeset output
library("broom")
tidy_lm_fit <- tidy(lm_fit, conf.int = TRUE)
tidy_lm_fit$p.value <- apa_p(tidy_lm_fit$p.value)
tidy_lm_fit$conf.int <- unlist(apa_confint(tidy_lm_fit[, c("conf.low", "conf.high")]))
str(tidy_lm_fit)
glance_lm_fit <- glance(lm_fit)
glance_lm_fit$r.squared <- apa_num(glance_lm_fit$r.squared, gt1 = FALSE)
glance_lm_fit$p.value <- apa_p(glance_lm_fit$p.value)
glance_lm_fit$df <- apa_df(glance_lm_fit$df)
glance_lm_fit$df.residual <- apa_df(glance_lm_fit$df.residual)
str(glance_lm_fit)
## ----construct-apa-results-labels---------------------------------------------
tidy_lm_fit <- apa_num(tidy_lm_fit)
variable_labels(tidy_lm_fit) <- c(
term = "Term"
, estimate = "$b$"
, statistic = paste0("$t(", glance_lm_fit$df.residual, ")")
, p.value = "$p$"
, conf.int = "95% CI"
)
glance_lm_fit <- apa_num(glance_lm_fit)
variable_labels(glance_lm_fit) <- c(
r.squared = "$R^2$"
, statistic = "$F$"
, p.value = "$p$"
, AIC = "$\\mathrm{AIC}$"
)
## ----glue---------------------------------------------------------------------
papaja:::construct_glue(tidy_lm_fit, "estimate")
## ----construct-apa-results----------------------------------------------------
lm_results <- glue_apa_results(
x = tidy_lm_fit
, est_glue = papaja:::construct_glue(tidy_lm_fit, "estimate")
, stat_glue = papaja:::construct_glue(tidy_lm_fit, "statistic")
, term_names = sanitize_terms(tidy_lm_fit$term)
)
lm_results
## ----amend-apa-results--------------------------------------------------------
add_glue_to_apa_results(
.x = glance_lm_fit
, container = lm_results
, sublist = "modelfit"
, est_glue = c(
r2 = "$<<svl(r.squared)>> = <<r.squared>>$"
, aic = ""
)
, stat_glue = c(
r2 = papaja:::construct_glue(glance_lm_fit, "statistic")
, aic = "$<<svl(AIC)>> = <<AIC>>$"
)
)
## -----------------------------------------------------------------------------
in_paren <- TRUE
papaja:::validate(in_paren, check_class = "logical", check_length = 1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.