simy: Estimate Interventional Markov Equivalence Class of a DAG

View source: R/gies.R

simyR Documentation

Estimate Interventional Markov Equivalence Class of a DAG

Description

Estimate the interventional essential graph representing the Markov equivalence class of a DAG using the dynamic programming (DP) approach of Silander and Myllymäki (2006). This algorithm maximizes a decomposable scoring criterion in exponential runtime.

Usage

simy(score, labels = score$getNodes(), targets = score$getTargets(),
    verbose = FALSE, ...)

Arguments

score

An instance of a class derived from Score.

labels

Node labels; by default, they are determined from the scoring object.

targets

A list of intervention targets (cf. details). A list of vectors, each vector listing the vertices of one intervention target.

verbose

if TRUE, detailed output is provided.

...

Additional arguments for debugging purposes and fine tuning.

Details

This function estimates the interventional Markov equivalence class of a DAG based on a data sample with interventional data originating from various interventions and possibly observational data. The intervention targets used for data generation must be specified by the argument targets as a list of (integer) vectors listing the intervened vertices; observational data is specified by an empty set, i.e. a vector of the form integer(0). As an example, if data contains observational samples as well as samples originating from an intervention at vertices 1 and 4, the intervention targets must be specified as list(integer(0), as.integer(1), as.integer(c(1, 4))).

An interventional Markov equivalence class of DAGs can be uniquely represented by a partially directed graph called interventional essential graph. Its edges have the following interpretation:

  1. a directed edge a \longrightarrow b stands for an arrow that has the same orientation in all representatives of the interventional Markov equivalence class;

  2. an undirected edge a – b stands for an arrow that is oriented in one way in some representatives of the equivalence class and in the other way in other representatives of the equivalence class.

Note that when plotting the object, undirected and bidirected edges are equivalent.

The DP approach of Silander and Myllymäki (2006) is a score-based algorithm that guarantees to find the optimum of any decomposable scoring criterion. Its CPU and memory consumption grow exponentially with the number of variables in the system, irrespective of the sparseness of the true or estimated DAG. The implementation in the pcalg package is feasible up to approximately 20 variables, depending on the user's computer.

Value

simy returns a list with the following two components:

essgraph

An object of class EssGraph containing an estimate of the equivalence class of the underlying DAG.

repr

An object of a class derived from ParDAG containing a (random) representative of the estimated equivalence class.

Author(s)

Alain Hauser (alain.hauser@bfh.ch)

References

T. Silander and P. Myllymäki (2006). A simple approach for finding the globally optimal Bayesian network structure. Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI 2006), 445–452

See Also

gies, Score, EssGraph

Examples

##################################################
## Using Gaussian Data
##################################################
## Load predefined data
data(gmInt)

## Define the score (BIC)
score <- new("GaussL0penIntScore", gmInt$x, gmInt$targets, gmInt$target.index)

## Estimate the essential graph
simy.fit <- simy(score) 
eDAG <- simy.fit$essgraph
as(eDAG, "graph")

## Look at the graph incidence matrix (a "sparseMatrix"):
if(require(Matrix))
  show( as(as(eDAG, "graphNEL"), "Matrix") )


## Plot the estimated essential graph and the true DAG
if (require(Rgraphviz)) {
  par(mfrow=c(1,2))
  plot(eDAG, main = "Estimated ess. graph")
  plot(gmInt$g, main = "True DAG")
}

pcalg documentation built on May 29, 2024, 5:24 a.m.