Nothing
library(pcalg)
res <- rep(FALSE, 10)
set.seed(123)
g <- pcalg::randomDAG(n = 7, prob = 0.3)
plot(g)
cpdag <- dag2cpdag(g)
## plot(cpdag)
cpdag.mat <- t(as(cpdag,"matrix")) ## has correct encoding
## test 1: using graph, valid
g1 <- addBgKnowledge(gInput = cpdag, x = 3, y = 5)
m1 <- t(as(g1, "matrix"))
res[1] <- (m1[3,5]==0 & m1[5,3]==1) ## should be true
## test 2: using matrix, valid
m2 <- addBgKnowledge(gInput = cpdag.mat, x = 3, y = 5, verbose = TRUE)
res[2] <- (m2[3,5]==0 & m2[5,3]==1) ## should be true
## test 3: using matrix, invalid
m3 <- addBgKnowledge(gInput = cpdag.mat, x = 6, y = 3, verbose = TRUE)
res[3] <- is.null(m3)
## test 4: using graph, invalid
g4 <- addBgKnowledge(gInput = cpdag, x = 6, y = 3, verbose = TRUE)
res[4] <- is.null(g4)
## test 5: using matrix, invalid
m5 <- addBgKnowledge(gInput = cpdag.mat, x = 1, y = 3, verbose = TRUE)
res[5] <- is.null(m5)
## test 6: using graph, invalid
g6 <- addBgKnowledge(gInput = cpdag, x = 1, y = 3, verbose = TRUE)
res[6] <- is.null(g6)
## test 7: empty background knowledge: Meek rule 1
m7 <- matrix(0, 3,3)
colnames(m7) <- rownames(m7) <- as.character(1:ncol(m7))
r7T <- m7
m7[2,1] <- m7[3,2] <- m7[2,3] <- 1
r7 <- addBgKnowledge(gInput = m7, x = c(), y = c(), verbose = TRUE,
checkInput = FALSE)
r7T[2,1] <- r7T[3,2] <- 1
res[7] <- identical(r7,r7T)
## test 8: empty background knowledge: Meek rule 2
m8 <- matrix(0, 3,3)
colnames(m8) <- rownames(m8) <- as.character(1:ncol(m8))
r8T <- m8
m8[1,2] <- m8[2,3] <- m8[3,1] <- m8[3,2] <- 1
r8 <- addBgKnowledge(gInput = m8, x = c(), y = c(), verbose = TRUE,
checkInput = FALSE)
r8T[1,2] <- r8T[3,1] <- r8T[3,2] <- 1
res[8] <- identical(r8,r8T)
## test 9: empty background knowledge: Meek rule 3
m9 <- matrix(0, 4,4)
colnames(m9) <- rownames(m9) <- as.character(1:ncol(m9))
r9T <- m9
m9[1,2:4] <- m9[2,1] <- m9[3,c(1,2,4)] <- m9[4,1] <- 1
r9 <- addBgKnowledge(gInput = m9, x = c(), y = c(), verbose = TRUE,
checkInput = FALSE)
r9T[1,c(2,4)] <- r9T[2,1] <- r9T[3,c(1,2,4)] <- r9T[4,1] <- 1
res[9] <- identical(r9,r9T)
## test 10: empty background knowledge: Meek rule 4
m10 <- matrix(0, 4,4)
colnames(m10) <- rownames(m10) <- as.character(1:ncol(m10))
r10T <- m10
m10[1,2:4] <- m10[2,c(1,3)] <- m10[3,c(1,4)] <- m10[4,1] <- 1
r10 <- addBgKnowledge(gInput = m10, x = c(), y = c(), verbose = TRUE,
checkInput = FALSE)
r10T[1,c(3,4)] <- r10T[2,c(1,3)] <- r10T[3,c(1,4)] <- r10T[4,1] <- 1
res[10] <- identical(r9,r9T)
## final result
stopifnot(all(res))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.