Nothing
#' Copenhagen Stroke Study
#'
#' This data set contains a subset of the data from the Copenhagen stroke
#' study.
#'
#' @name cost
#' @docType data
#' @format This data frame contains the observations of 518 stroke patients :
#' \describe{ \item{age}{Age of the patients in years.} \item{sex}{A factor
#' with two levels \code{female} and \code{male}.} \item{hypTen}{Hypertension,
#' a factor with two levels \code{no} and \code{yes}.} \item{ihd}{History of
#' ischemic heart disease at admission, a factor with two levels \code{no} and
#' \code{yes}.} \item{prevStroke}{History of previous strokes before admission,
#' a factor with two levels \code{no} and \code{yes}.}
#' \item{othDisease}{History of other disabling diseases (e.g. severe
#' dementia), a factor with two levels \code{no} and \code{yes}.}
#' \item{alcohol}{Daily alcohol consumption, a factor with two levels \code{no}
#' and \code{yes}.} \item{diabetes}{Diabetes mellitus status indicating if the
#' glucose level was higher than 11 mmol/L, a factor with two levels \code{no}
#' and \code{yes}.} \item{smoke}{Daily smoking status, a factor with two levels
#' \code{no} and \code{yes}.} \item{atrialFib}{Atrial fibrillation, a factor
#' with two levels \code{no} and \code{yes}.} \item{hemor}{Hemorrhage (stroke
#' subtype), a factor with two levels \code{no} (infarction) and \code{yes}
#' (hemorrhage).} \item{strokeScore}{Scandinavian stroke score at admission to
#' the hospital. Ranges from 0 (worst) to 58 (best).}
#' \item{cholest}{Cholesterol level} \item{time}{Survival time (in days).}
#' \item{status}{Status (\code{0}: censored, \code{1}: event).} }
#' @references Joergensen HS, Nakayama H, Reith J, Raaschou HO, and Olsen TS.
#' Acute stroke with atrial fibrillation. The Copenhagen Stroke Study. Stroke,
#' 27(10):1765-9, 1996.
#'
#' Mogensen UB, Ishwaran H, and Gerds TA. Evaluating random forests for
#' survival analysis using prediction error curves. Technical Report 8,
#' University of Copenhagen, Department of Biostatistics, 2010.
#' @useDynLib pec, .registration=TRUE
#' @importFrom foreach %dopar%
#' @importFrom survival Surv
#' @importFrom prodlim Hist
#' @importFrom timereg aalen
#' @importFrom grDevices col2rgb gray
#' @importFrom graphics abline axis box legend lines mtext par plot points segments text title
#' @importFrom stats model.frame model.response as.formula coef family formula median model.matrix na.fail na.omit pnorm predict quantile rbinom rexp runif sd smooth terms time update update.formula var wilcox.test
#' @importFrom utils capture.output head select.list
#' @keywords datasets
NULL
#' German Breast Cancer Study Group 2
#'
#' A data frame containing the observations from the GBSG2 study.
#'
#'
#' @name GBSG2
#' @docType data
#' @format This data frame contains the observations of 686 women: \describe{
#' \item{horTh}{hormonal therapy, a factor at two levels \code{no} and
#' \code{yes}.} \item{age}{of the patients in years.}
#' \item{menostat}{menopausal status, a factor at two levels \code{pre}
#' (premenopausal) and \code{post} (postmenopausal).} \item{tsize}{tumor size
#' (in mm).} \item{tgrade}{tumor grade, a ordered factor at levels \code{I < II
#' < III}.} \item{pnodes}{number of positive nodes.}
#' \item{progrec}{progesterone receptor (in fmol).} \item{estrec}{estrogen
#' receptor (in fmol).} \item{time}{recurrence free survival time (in days).}
#' \item{cens}{censoring indicator (0- censored, 1- event).} }
#' @references M. Schumacher, G. Basert, H. Bojar, K. Huebner, M. Olschewski,
#' W. Sauerbrei, C. Schmoor, C. Beyerle, R.L.A. Neumann and H.F. Rauschecker
#' for the German Breast Cancer Study Group (1994), Randomized \eqn{2\times2}
#' trial evaluating hormonal treatment and the duration of chemotherapy in
#' node-positive breast cancer patients. \emph{Journal of Clinical Oncology},
#' \bold{12}, 2086--2093.
#' @keywords datasets
NULL
#' Pbc3 data
#'
#' PBC3 was a multi-centre randomized clinical trial conducted in six European
#' hospitals. Between 1 Jan. 1983 and 1 Jan. 1987, 349 patients with the liver
#' disease primary biliary cirrhosis (PBC) were randomized to either treatment
#' with Cyclosporin A (CyA, 176 patients) or placebo (173 patients). The
#' purpose of the trial was to study the effect of treatment on the survival
#' time. However, during the course of the trial an increased use of liver
#' transplantation for patients with this disease made the investigators
#' redefine the main response variable to be time to ``failure of medical
#' treatment'' defined as either death or liver transplantation. Patients were
#' then followed from randomization until treatment failure, drop-out or 1 Jan,
#' 1989; 61 patients died (CyA: 30, placebo: 31), another 29 were transplanted
#' (CyA: 14, placebo: 15) and 4 patients were lost to follow-up before 1 Jan.
#' 1989. At entry a number of clinical, biochemical and histological variables,
#' including serum bilirubin, serum albumin, sex, age were recorded.
#'
#'
#' @name Pbc3
#' @docType data
#' @format A data frame with 349 observations on the following 15 variables.
#' \describe{ \item{ptno}{patient identification}
#' \item{unit}{hospital (1: Hvidovre, 2: London, 3: Copenhagen, 4:
#' Barcelona, 5: Munich, 6: Lyon)} \item{tment}{treatment (0: placebo,
#' 1: CyA)} \item{sex}{(1: males, 0: females)} \item{age}{age
#' in years} \item{stage}{histological stage (1, 2, 3, 4)}
#' \item{gibleed}{previous gastrointestinal bleeding (1: yes, 0: no)}
#' \item{crea}{creatinine (micromoles/L)} \item{alb}{albumin
#' (g/L)} \item{bili}{bilirubin (micromoles/L)}
#' \item{alkph}{alkaline phosphatase (IU/L)}
#' \item{asptr}{aspartate transaminase (IU/L)}
#' \item{weight}{body weight (kg)} \item{days}{observation time
#' (days)} \item{status}{status at observation time (0: censored, 1:
#' liver transplantation, 2 : dead)} }
#' @references Andersen and Skovgaard. Regression with linear predictors.
#' Springer, 2010.
#' @source
#' Andersen and Skovgaard. Regression with linear predictors.
#'
#' @keywords datasets
#' @examples
#'
#' data(Pbc3)
#'
NULL
#' threecity data
#'
#' Extracted data from a french population based cohort (Three-City cohort). The dataset includes
#' followup information on dementia outcome and predicted 5-year risks based on
#' based on the subject specific information which includes age, gender,
#' education level and cognitive decline measured by a psychometric test
#' (Mini Mental State Examination). The prediction model from which the
#' predictions have been computed has been fitted on independent training
#' data from the Paquid cohort, another french population based cohort with similar design (see Reference Blanche et al. 2015 for details) .
#'
#' @name threecity
#' @docType data
#' @format A subsample consisting of 2000 observations on the following 3 variables.
#' \describe{ \item{pi}{5-year absolute risk predictions of dementia.}
#' \item{status}{0=censored, 1=dementia, 2=death dementia free}
#' \item{time}{time to event (i.e., time to
#' either dementia, death dementia free or loss of follow-up)}}
#' @references
#' Blanche, P., Proust-Lima, C., Loubere, L., Berr, C., Dartigues, J. F., Jacqmin-Gadda, H. (2015).
#' Quantifying and comparing dynamic
#' predictive accuracy of joint models for longitudinal marker and
#' time-to-event in presence of censoring and competing risks.
#' Biometrics, 71(1), 102-113.
#'
#' @source
#'
#' Web-appendix of Blanche et al. (2015).
#'
#' @keywords datasets
#' @examples
#'
#' data(threecity)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.