Description Usage Arguments Author(s) References Examples
Make some plots!
1 2 |
x |
A "penlda" object; this is the output of the PenalizedLDA function. |
... |
... |
Daniela M. Witten
D Witten and R Tibshirani (2011) Penalized classification using Fisher's linear discrimint. To appear in JRSSB.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | set.seed(1)
n <- 20
p <- 100
x <- matrix(rnorm(n*p), ncol=p)
xte <- matrix(rnorm(n*p), ncol=p)
y <- c(rep(1,5),rep(2,5),rep(3,10))
x[y==1,1:10] <- x[y==1,1:10] + 2
x[y==2,11:20] <- x[y==2,11:20] - 2
xte[y==1,1:10] <- xte[y==1,1:10] + 2
xte[y==2,11:20] <- xte[y==2,11:20] - 2
out <- PenalizedLDA(x,y,xte,lambda=.14,K=2)
print(out)
plot(out)
pred.out <- predict(out,xte=xte)
cat("Predictions obtained using PenalizedLDA function and using
predict.penlda function are the same.")
print(cor(pred.out$ypred,out$ypred))
|
Number of discriminant vectors: 2
Number of nonzero features in discriminant vector 1 : 29
Number of nonzero features in discriminant vector 2 : 35
Total number of nonzero features: 45
Details:
Type: standard
Lambda: 0.14
Predictions obtained using PenalizedLDA function and using
predict.penlda function are the same. [,1] [,2]
[1,] 1.0000000 0.8361702
[2,] 0.8361702 1.0000000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.