Nothing
test_that("binned_residuals", {
data(mtcars)
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
result <- binned_residuals(model, ci_type = "gaussian", residuals = "response")
expect_named(
result,
c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "CI_low", "CI_high", "group")
)
expect_equal(
result$xbar,
c(0.03786, 0.09514, 0.25911, 0.47955, 0.71109, 0.97119),
tolerance = 1e-4
)
expect_equal(
result$ybar,
c(-0.03786, -0.09514, 0.07423, -0.07955, 0.28891, -0.13786),
tolerance = 1e-4
)
expect_equal(
result$CI_low,
c(-0.05686, -0.12331, -0.35077, -0.57683, 0.17916, -0.44147),
tolerance = 1e-4
)
expect_identical(
capture.output(print(result)),
"Warning: Probably bad model fit. Only about 50% of the residuals are inside the error bounds."
)
})
test_that("binned_residuals, n_bins", {
data(mtcars)
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
result <- binned_residuals(model, ci_type = "gaussian", residuals = "response", n_bins = 10)
expect_named(
result,
c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "CI_low", "CI_high", "group")
)
expect_equal(
result$xbar,
c(
0.02373, 0.06301, 0.08441, 0.17907, 0.29225, 0.44073, 0.54951,
0.69701, 0.9168, 0.99204
),
tolerance = 1e-4
)
expect_equal(
result$ybar,
c(
-0.02373, -0.06301, -0.08441, -0.17907, 0.20775, -0.1074, 0.11715,
0.30299, -0.25014, 0.00796
),
tolerance = 1e-4
)
})
test_that("binned_residuals, terms", {
data(mtcars)
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
result <- binned_residuals(model, ci_type = "gaussian", residuals = "response", term = "mpg")
expect_named(
result,
c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "CI_low", "CI_high", "group")
)
expect_equal(
result$xbar,
c(12.62, 15.34, 18.1, 20.9, 22.875, 30.06667),
tolerance = 1e-4
)
expect_equal(
result$ybar,
c(-0.05435, -0.07866, 0.13925, -0.11861, 0.27763, -0.13786),
tolerance = 1e-4
)
})
test_that("binned_residuals, deviance residuals, gaussian CI", {
data(mtcars)
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
result <- binned_residuals(model, residuals = "deviance", ci_type = "gaussian")
expect_named(
result,
c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "CI_low", "CI_high", "group")
)
expect_equal(
result$xbar,
c(0.03786, 0.09514, 0.25911, 0.47955, 0.71109, 0.97119),
tolerance = 1e-4
)
expect_equal(
result$ybar,
c(-0.26905, -0.44334, 0.03763, -0.19917, 0.81563, -0.23399),
tolerance = 1e-4
)
expect_equal(
result$ybar,
c(-0.26905, -0.44334, 0.03763, -0.19917, 0.81563, -0.23399),
tolerance = 1e-4
)
expect_equal(
result$CI_low,
c(-0.33985, -0.50865, -0.98255, -1.36025, 0.61749, -1.00913),
tolerance = 1e-4
)
})
test_that("binned_residuals, default", {
data(mtcars)
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
result <- binned_residuals(model)
expect_named(
result,
c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "CI_low", "CI_high", "group")
)
expect_equal(
result$xbar,
c(0.03786, 0.09514, 0.25911, 0.47955, 0.71109, 0.97119),
tolerance = 1e-4
)
expect_equal(
result$ybar,
c(-0.26905, -0.44334, 0.03763, -0.19917, 0.81563, -0.23399),
tolerance = 1e-4
)
expect_equal(
result$CI_low,
c(-0.52997, -0.70426, -0.32935, -0.59948, 0.55472, -0.55251),
tolerance = 1e-4
)
})
test_that("binned_residuals, bootstrapped CI", {
skip_on_cran()
data(mtcars)
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
set.seed(123)
result <- binned_residuals(model, ci_type = "boot", iterations = 100)
expect_named(
result,
c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "CI_low", "CI_high", "group")
)
expect_equal(
result$xbar,
c(0.03786, 0.09514, 0.25911, 0.47955, 0.71109, 0.97119),
tolerance = 1e-4
)
expect_equal(
result$ybar,
c(-0.26905, -0.44334, 0.03763, -0.19917, 0.81563, -0.23399),
tolerance = 1e-4
)
expect_equal(
result$CI_low,
c(-0.32623, -0.50543, -0.80879, -1.15154, 0.67569, -0.65748),
tolerance = 1e-4
)
})
test_that("binned_residuals, msg for non-bernoulli", {
skip_on_cran()
tot <- rep(10, 100)
suc <- rbinom(100, prob = 0.9, size = tot)
dat <- data.frame(tot, suc)
dat$prop <- suc / tot
dat$x1 <- as.factor(sample.int(5, 100, replace = TRUE))
mod <- glm(prop ~ x1,
family = binomial,
data = dat,
weights = tot
)
expect_message(binned_residuals(mod), regex = "Using `ci_type = \"gaussian\"`")
expect_silent(binned_residuals(mod, verbose = FALSE))
})
test_that("binned_residuals, empty bins", {
eel <- data.frame(
cured_bin = c(
1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0
),
intervention = c(
"No treatment",
"No treatment", "No treatment", "No treatment", "Intervention",
"No treatment", "Intervention", "Intervention", "No treatment",
"No treatment", "Intervention", "No treatment", "No treatment",
"Intervention", "No treatment", "No treatment", "Intervention",
"Intervention", "Intervention", "Intervention", "No treatment",
"Intervention", "Intervention", "No treatment", "Intervention",
"Intervention", "No treatment", "No treatment", "Intervention",
"Intervention", "No treatment", "No treatment", "Intervention",
"Intervention", "Intervention", "No treatment", "No treatment",
"Intervention", "No treatment", "Intervention", "No treatment",
"Intervention", "Intervention", "Intervention", "No treatment",
"No treatment", "No treatment", "Intervention", "Intervention",
"No treatment", "Intervention", "Intervention", "Intervention",
"No treatment", "No treatment", "Intervention", "Intervention",
"No treatment", "Intervention", "Intervention", "No treatment",
"No treatment", "No treatment", "Intervention", "Intervention",
"No treatment", "No treatment", "No treatment", "No treatment",
"No treatment", "Intervention", "No treatment", "Intervention",
"Intervention", "Intervention", "No treatment", "Intervention",
"Intervention", "No treatment", "Intervention", "No treatment",
"No treatment", "Intervention", "Intervention", "Intervention",
"Intervention", "No treatment", "Intervention", "Intervention",
"No treatment", "Intervention", "No treatment", "Intervention",
"Intervention", "Intervention", "Intervention", "No treatment",
"No treatment", "No treatment", "Intervention", "No treatment",
"No treatment", "Intervention", "No treatment", "No treatment",
"No treatment", "No treatment", "No treatment", "Intervention",
"Intervention", "No treatment", "No treatment", "Intervention"
), duration = c(
7L, 7L, 6L, 8L, 7L, 6L, 7L, 7L, 8L, 7L, 7L, 7L,
5L, 9L, 6L, 7L, 8L, 7L, 7L, 9L, 7L, 9L, 8L, 7L, 6L, 8L, 7L, 6L,
7L, 6L, 7L, 6L, 5L, 6L, 7L, 7L, 8L, 7L, 5L, 7L, 9L, 10L, 7L,
8L, 5L, 8L, 4L, 7L, 8L, 6L, 6L, 6L, 7L, 7L, 8L, 7L, 7L, 7L, 7L,
8L, 7L, 9L, 7L, 8L, 8L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 8L, 8L, 9L,
7L, 10L, 5L, 7L, 8L, 9L, 5L, 10L, 8L, 7L, 6L, 5L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 8L, 5L, 6L, 7L, 6L, 7L, 7L, 9L, 6L, 6L, 7L, 7L,
6L, 7L, 8L, 9L, 4L, 6L, 9L
),
stringsAsFactors = FALSE
)
m_eel <- glm(cured_bin ~ intervention + duration, data = eel, family = binomial())
out <- binned_residuals(m_eel)
expect_equal(
out$xbar,
c(0.27808, 0.28009, 0.28167, 0.28326, 0.48269, 0.56996, 0.57188, 0.57456),
tolerance = 1e-4
)
expect_equal(
out$CI_low,
c(-0.42552, -0.45162, -0.10819, -0.7339, -0.28086, -0.52599, 0.02795, -0.44023),
tolerance = 1e-4
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.