plotly_data: Obtain data associated with a plotly graph

Description Usage Arguments Examples

View source: R/plotly_data.R

Description

plotly_data() returns data associated with a plotly visualization (if there are multiple data frames, by default, it returns the most recent one).

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
plotly_data(p, id = p$x$cur_data)

## S3 method for class 'plotly'
groups(x)

## S3 method for class 'plotly'
ungroup(x, ...)

## S3 method for class 'plotly'
group_by_(.data, ..., .dots, add = FALSE)

## S3 method for class 'plotly'
summarise_(.data, ..., .dots)

## S3 method for class 'plotly'
mutate_(.data, ..., .dots)

## S3 method for class 'plotly'
do_(.data, ..., .dots)

## S3 method for class 'plotly'
arrange_(.data, ..., .dots)

## S3 method for class 'plotly'
select_(.data, ..., .dots)

## S3 method for class 'plotly'
filter_(.data, ..., .dots)

## S3 method for class 'plotly'
distinct_(.data, ..., .dots)

## S3 method for class 'plotly'
slice_(.data, ..., .dots)

## S3 method for class 'plotly'
rename_(.data, ..., .dots)

## S3 method for class 'plotly'
transmute_(.data, ..., .dots)

Arguments

p

a plotly visualization

id

a character string or number referencing an "attribute layer".

x

a plotly visualization

...

stuff passed onto the relevant method

.data

a plotly visualization

.dots

Used to work around non-standard evaluation. See vignette("nse") for details

add

By default, when add = FALSE, group_by will override existing groups. To instead add to the existing groups, use add = TRUE

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# use group_by() to define groups of visual markings
p <- txhousing %>%
  group_by(city) %>%
  plot_ly(x = ~date, y = ~sales)
p

# plotly objects preserve data groupings 
groups(p)
plotly_data(p)

# dplyr verbs operate on plotly objects as if they were data frames
p <- economics %>%
  plot_ly(x = ~date, y = ~unemploy / pop) %>%
  add_lines() %>%
  mutate(rate = unemploy / pop) %>% 
  filter(rate == max(rate))
plotly_data(p)
add_markers(p)
layout(p, annotations = list(x = ~date, y = ~rate, text = "peak"))

# use group_by() + do() + subplot() for trellis displays 
d <- group_by(mpg, drv)
plots <- do(d, p = plot_ly(., x = ~cty, name = ~drv))
subplot(plots[["p"]], nrows = 3, shareX = TRUE)

# arrange displays by their mean
means <- summarise(d, mn = mean(cty, na.rm = TRUE))
means %>%
  dplyr::left_join(plots) %>%
  arrange(mn) %>%
  subplot(nrows = NROW(.), shareX = TRUE)
  
# more dplyr verbs applied to plotly objects
p <- mtcars %>%
  plot_ly(x = ~wt, y = ~mpg, name = "scatter trace") %>%
  add_markers()
p %>% slice(1) %>% plotly_data()
p %>% slice(1) %>% add_markers(name = "first observation")
p %>% filter(cyl == 4) %>% plotly_data()
p %>% filter(cyl == 4) %>% add_markers(name = "four cylinders")

plotly documentation built on Feb. 13, 2020, 1:07 a.m.