Nothing
#' fits a calibration curve via gam
#'
#' @param y binary or a time-to-event (\code{Surv}) outcome. For the former \code{family = binomial(link="logit")} and for the latter \code{family = mgcv::cox.ph()}.
#' @param p predicted probabilities
#' @param x predictor (could be transformation of \code{p})
#' @param xp values for plotting (same scale as \code{x})
#' @param time time to calculate survival probabilities at (only relevant if \code{y} is a \code{Surv} object)
#' @param save_data whether to save the data elements in the returned object
#' @param save_mod whether to save the model in the returned object
#' @param pw save pointwise standard errors for plotting
#' @param ... additional arguments for \code{mgcv::gam} and \code{mgcv::s}
#'
#' @returns list of class \code{gam_cal}
#' @keywords internal
#' @export
#' @examples
#' library(pmcalibration)
#' # simulate some data
#' n <- 500
#' dat <- sim_dat(N = n, a1 = .5, a3 = .2)
#' head(dat)
#' # predictions
#' p <- with(dat, invlogit(.5 + x1 + x2 + x1*x2*.1))
#'
#' gam_cal(y = dat$y, p = p, x = p, xp = NULL, k = 20, method="REML")
gam_cal <- function(y, p, x, xp, time=NULL, save_data = TRUE, save_mod = TRUE, pw = FALSE, ...){
dots <- list(...)
if ("bs" %in% names(dots)) bs <- dots[['bs']] else bs <- "tp"
if ("k" %in% names(dots)) k <- dots[['k']] else k <- -1
if ("fx" %in% names(dots)) fx <- dots[['fx']] else fx <- FALSE
if ("method" %in% names(dots)) method <- dots[['method']] else method <- "GCV.Cp"
surv <- is(y, "Surv")
# fit the calibration curve model
if (surv){
times <- y[, 1]
events <- y[, 2]
d <- data.frame(times, events, x)
mod <- mgcv::gam(times ~ s(x, k = k, fx = fx, bs = bs), data = d,
family = mgcv::cox.ph(),
weights = events,
method = method)
p_c = 1 - as.vector(predict(mod, type = "response", newdata = data.frame(times = time, x=x)))
} else{
d <- data.frame(y, x)
mod <- mgcv::gam(y ~ s(x, k = k, fx = fx, bs = bs), data = d,
family = binomial(link="logit"),
method = method)
p_c <- as.vector(predict(mod, type = "response"))
}
if (!is.null(xp)){
if (pw){
if (surv){
p_c_p <- predict(mod, type = "response", newdata = data.frame(times = time, x = xp), se.fit=TRUE)
p_c_plot <- 1 - as.vector(p_c_p$fit)
} else{
p_c_p <- predict(mod, newdata = data.frame(x = xp), type = "response", se.fit = TRUE)
p_c_plot <- as.vector(p_c_p$fit)
}
p_c_plot_se <- as.vector(p_c_p$se)
} else{
if (surv){
p_c_plot <- 1 - as.vector(predict(mod, type = "response",
newdata = data.frame(times = time, x = xp)))
} else{
p_c_plot <- as.vector(predict(mod, newdata = data.frame(x = xp), type = "response"))
}
p_c_plot_se <- NULL
}
} else{
p_c_plot <- NULL
p_c_plot_se <- NULL
}
out <- list(
y = if (save_data) y else NULL,
p = if (save_data) p else NULL,
x = if (save_data) x else NULL,
xp = if (save_data) xp else NULL,
p_c = p_c,
metrics = cal_metrics(p, p_c),
p_c_plot = p_c_plot,
p_c_plot_se = p_c_plot_se,
model = if (save_mod) mod else NULL,
smooth_args = list(
smooth = "gam",
bs = bs,
k = k,
fx = fx,
method = method
),
time = time,
outcome = ifelse(surv, "tte", "binary")
)
class(out) <- "gam_cal"
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.