Nothing
#' calibration curve via \code{loess}
#'
#' @param y binary outcome
#' @param p predicted probabilities
#' @param x predictor (could be transformation of \code{p})
#' @param xp values for plotting (same scale as \code{x})
#' @param save_data whether to save y, p, x, xp in the returned object
#' @param save_mod whether to save the model in the returned object
#' @param pw save pointwise standard errors for plotting
#'
#' @returns list of class \code{loess_cal}
#' @keywords internal
#' @export
#' @examples
#' library(pmcalibration)
#' # simulate some data
#' n <- 500
#' dat <- sim_dat(N = n, a1 = .5, a3 = .2)
#'
#' # predictions
#' p <- with(dat, invlogit(.5 + x1 + x2 + x1*x2*.1))
#'
#' loess_cal(y = dat$y, p = p, x = p, xp = NULL)
loess_cal <- function(p, y, x, xp, save_data = TRUE, save_mod = TRUE, pw = FALSE){
mod <- loess(y ~ x)
# TODO
# explore loess options more fully...
# control = loess.control(surface="direct")
# would allow extrapolation on bs resamples but seems to take longer...
p_c <- predict(mod, newdata = x)
if (!is.null(xp)){
if (pw){
p_c_p <- predict(mod, newdata = data.frame(x = xp), se = TRUE)
p_c_plot <- as.vector(p_c_p$fit)
p_c_plot_se <- as.vector(p_c_p$se)
} else{
p_c_plot <- predict(mod, newdata = xp)
p_c_plot_se <- NULL
}
} else{
p_c_plot <- NULL
p_c_plot_se <- NULL
}
out <- list(
y = if (save_data) y else NULL,
p = if (save_data) p else NULL,
x = if (save_data) x else NULL,
xp = if (save_data) xp else NULL,
p_c = p_c,
metrics = cal_metrics(p, p_c),
p_c_plot = p_c_plot,
p_c_plot_se = p_c_plot_se,
model = if (save_mod) mod else NULL,
smooth_args = list(smooth = "loess")
)
class(out) <- "loess_cal"
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.