View source: R/pmml.randomForest.R
pmml.randomForest | R Documentation |
Generate the PMML representation for a randomForest object from the package randomForest.
## S3 method for class 'randomForest' pmml( model, model_name = "randomForest_Model", app_name = "SoftwareAG PMML Generator", description = "Random Forest Tree Model", copyright = NULL, model_version = NULL, transforms = NULL, missing_value_replacement = NULL, parent_invalid_value_treatment = "returnInvalid", child_invalid_value_treatment = "asIs", ... )
model |
A randomForest object. |
model_name |
A name to be given to the PMML model. |
app_name |
The name of the application that generated the PMML. |
description |
A descriptive text for the Header element of the PMML. |
copyright |
The copyright notice for the model. |
model_version |
A string specifying the model version. |
transforms |
Data transformations. |
missing_value_replacement |
Value to be used as the 'missingValueReplacement' attribute for all MiningFields. |
parent_invalid_value_treatment |
Invalid value treatment at the top MiningField level. |
child_invalid_value_treatment |
Invalid value treatment at the model segment MiningField level. |
... |
Further arguments passed to or from other methods. |
This function outputs a Random Forest in PMML format.
PMML representation of the randomForest object.
Tridivesh Jena
randomForest: Breiman and Cutler's random forests for classification and regression
## Not run: # Build a randomForest model library(randomForest) iris_rf <- randomForest(Species ~ ., data = iris, ntree = 20) # Convert to pmml iris_rf_pmml <- pmml(iris_rf) rm(iris_rf) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.