Nothing
#' Find polite text
#' @description Finds examples of most or least polite text in a corpus
#' @param text a character vector of texts.
#' @param covar a vector of politeness labels (from human or model), or other covariate.
#' @param type a string indicating if function should return the most or least polite texts or both. If \code{length > 1} only first value is used.
#' @param num_docs integer of number of documents to be returned. Default is 5.
#' @return data.frame with texts ranked by (more or least) politeness. See details for more information.
#' @details Function returns a data.frame ranked by (more or least) politeness.
#' If \code{type == 'most'}, the \code{num_docs} most polite texts will be returned.
#' If \code{type == 'least'}, the \code{num_docs} least polite texts will be returned.
#' If \code{type == 'both'}, both most and least polite text will be returned.
#' if \code{num_docs} is even, half will be most and half least polite else half + 1 will be most polite.
#'
#' \code{df_polite} must have the same number of rows as the \code{length(text)} and \code{length(covar)}.
#' @examples
#'
#' data("phone_offers")
#' polite.data<-politeness(phone_offers$message, parser="none",drop_blank=FALSE)
#'
#' exampleTexts(phone_offers$message,
#' phone_offers$condition,
#' type = "most",
#' num_docs = 5)
#'
#' exampleTexts(phone_offers$message,
#' phone_offers$condition,
#' type = "least",
#' num_docs = 10)
#'
#'@export
exampleTexts <- function(text,
covar,
type = c("most","least"),
num_docs = 5L){
# check type
valid_type <- c("most","least")
type <- type[1] # in case type has length > 1 only use first entry
if( ! type %in% valid_type){
stop( paste0("type must be one of the following ", paste0(valid_type, collapse = ", ")))
}
#
# l_proj <- suppressWarnings(trainModel(df_polite_train = df_polite,
# covar = covar, ... ))
#
# m_train_proj <- as.vector(l_proj$train_proj)
# df_docs_proj <- data.frame(text = text, projection = m_train_proj)
# dimension <- df_docs_proj$projection
if(! length(covar) ==length(text)){
stop("Covariate must be same length as texts")
}
dimension=covar
is_most <- type == "most"
df_out <- text[order(dimension, decreasing = is_most)][1:num_docs]
return(df_out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.