circleCub.Gauss | R Documentation |
This function calculates the integral of the bivariate, isotropic Gaussian
density (i.e., \Sigma
= sd^2*diag(2)
) over a circular domain
via the cumulative distribution function pchisq
of the (non-central)
Chi-Squared distribution (Abramowitz and Stegun, 1972, Formula 26.3.24).
circleCub.Gauss(center, r, mean, sd)
center |
numeric vector of length 2 (center of the circle). |
r |
numeric (radius of the circle). Several radii may be supplied. |
mean |
numeric vector of length 2 (mean of the bivariate Gaussian density). |
sd |
numeric (common standard deviation of the isotropic Gaussian density in both dimensions). |
The integral value (one for each supplied radius).
The non-centrality parameter of the evaluated chi-squared distribution
equals the squared distance between the mean
and the
center
. If this becomes too large, the result becomes inaccurate, see
pchisq
.
Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications.
circleCub.Gauss(center=c(1,2), r=3, mean=c(4,5), sd=6)
## compare with cubature over a polygonal approximation of a circle
## Not run: ## (this example requires gpclib)
disc.poly <- spatstat.geom::disc(radius=3, centre=c(1,2), npoly=32)
polyCub.exact.Gauss(disc.poly, mean=c(4,5), Sigma=6^2*diag(2))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.