Nothing
Tools for data analysis with partially observed Markov process (POMP) models (also known as stochastic dynamical systems, hidden Markov models, and nonlinear, non-Gaussian, state-space models). The package provides facilities for implementing POMP models, simulating them, and fitting them to time series data by a variety of frequentist and Bayesian methods. It is also a versatile platform for implementation of inference methods for general POMP models.
Package details |
|
---|---|
Author | Aaron A. King [aut, cre], Edward L. Ionides [aut], Carles Breto [aut], Stephen P. Ellner [ctb], Matthew J. Ferrari [ctb], Sebastian Funk [ctb], Steven G. Johnson [ctb], Bruce E. Kendall [ctb], Michael Lavine [ctb], Dao Nguyen [ctb], Eamon B. O'Dea [ctb], Daniel C. Reuman [ctb], Helen Wearing [ctb], Simon N. Wood [ctb] |
Maintainer | Aaron A. King <kingaa@umich.edu> |
License | GPL-3 |
Version | 4.2 |
URL | https://kingaa.github.io/pomp/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.