| filter_mean | R Documentation |
The mean of the filtering distribution
## S4 method for signature 'kalmand_pomp'
filter_mean(object, vars, ..., format = c("array", "data.frame"))
## S4 method for signature 'pfilterd_pomp'
filter_mean(object, vars, ..., format = c("array", "data.frame"))
object |
result of a filtering computation |
vars |
optional character; names of variables |
... |
ignored |
format |
format of the returned object |
The filtering distribution is that of
X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_k)=y^*_k,
where X(t_k), Y(t_k) are the latent state and observable processes, respectively, and y^*_t is the data, at time t_k.
The filtering mean is therefore the expectation of this distribution
E[X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_k)=y^*_k].
More on sequential Monte Carlo methods:
bsmc2(),
cond_logLik(),
eff_sample_size(),
filter_traj(),
kalman,
mif2(),
pfilter(),
pmcmc(),
pred_mean(),
pred_var(),
saved_states(),
wpfilter()
Other extraction methods:
coef(),
cond_logLik(),
covmat(),
eff_sample_size(),
filter_traj(),
forecast(),
logLik,
obs(),
pred_mean(),
pred_var(),
saved_states(),
spy(),
states(),
summary(),
time(),
timezero(),
traces()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.