# ReversalPowerLogistic: The Reversal Power Logistic Distribution In powdist: Power and Reversal Power Distributions

## Description

Density, distribution function, quantile function and random generation for the reversal power logistic distribution with parameters mu, sigma and lambda.

## Usage

 ```1 2 3 4 5 6 7 8 9``` ```drplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrplogis(n, lambda = 1, mu = 0, sigma = 1) ```

## Arguments

 `x, q` vector of quantiles. `lambda` shape parameter. `mu, sigma` location and scale parameters. `log, log.p` logical; if TRUE, probabilities p are given as log(p). `lower.tail` logical; if TRUE (default), probabilities are P[X ≤ x ], otherwise, P[X > x]. `p` vector of probabilities. `n` number of observations.

## Details

The reversal power Logistic distribution has density

f(x)=[λ/σ][exp(-(x-μ)/σ)/(1+exp(-(x-μ)/σ))^2][exp(-(x-μ)/σ)/(1+exp(-(x-μ)/σ)]^(λ-1), where -∞<μ<∞ is the location paramether, σ^2>0 the scale parameter and λ>0 the shape parameter.

## References

Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.

Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.

Nagler J. (1994) Scobit: an alternative estimator to logit and probit. American Journal Political Science, 38(1), 230-255.

Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.

## Examples

 ```1 2 3 4``` ```drplogis(1, 1, 3, 4) prplogis(1, 1, 3, 4) qrplogis(0.2, 1, 3, 4) rrplogis(5, 2, 3, 4) ```

powdist documentation built on May 1, 2019, 10:11 p.m.