Description Usage Arguments Details References Examples
Density, distribution function, quantile function and random generation for the reversal power reversal-Gumbel distribution with parameters mu, sigma and lambda.
1 2 3 4 5 6 7 8 9 | drprgumbel(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
prprgumbel(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrprgumbel(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrprgumbel(n, lambda = 1, mu = 0, sigma = 1)
|
x, q |
vector of quantiles. |
lambda |
shape parameter. |
mu, sigma |
location and scale parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x ], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power reversal-Gumbel distribution has density
f(x)=[λ/σ][exp(-(x-μ)/σ-exp(-(x-μ)/σ))][exp(-exp((x-μ)/σ))]^(λ-1),
where -∞<μ<∞ is the location paramether, σ^2>0 the scale parameter and λ>0 the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
1 2 3 4 | drprgumbel(1, 1, 3, 4)
prprgumbel(1, 1, 3, 4)
qrprgumbel(0.2, 1, 3, 4)
rrprgumbel(5, 2, 3, 4)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.