Description Usage Arguments Details References Examples
Density, distribution function, quantile function and random generation for the reversal power normal distribution with parameters mu, sigma and lambda.
1 2 3 4 5 6 7 8 9 |
x, q |
vector of quantiles. |
lambda |
shape parameter. |
mu, sigma |
location and scale parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x ], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power Normal distribution has density
f(x)=[λ/σ][exp(-((x-μ)/σ)^2)/√(2π)][Φ(-(x-μ)/σ)]^(λ-1),
where -∞<μ<∞ is the location paramether, σ^2>0 the scale parameter and λ>0 the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Bazán, J. L., Romeo, J. S. and Rodrigues, J. (2014) Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics. 28(4), 467–482.
1 2 3 4 |
[1] 0.08801633
[1] 0.3085375
[1] -0.3664849
[1] 0.913075 1.130731 -2.020498 1.121421 4.719563
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.