tests/testthat/test-ptable_pop.R

library(testthat)
suppressMessages(library(lavaan))

check_gen_dat <- function(model,
                          pop_es,
                          n = 10000,
                          seed = NULL,
                          number_of_indicators = NULL,
                          reliability = NULL,
                          keep_f_scores = FALSE) {
  set.seed(seed)
  ptable <- ptable_pop(model,
                       pop_es = pop_es,
                       standardized = TRUE)
  mm_out <- model_matrices_pop(ptable)
  # mm_out_original <- mm_out
  # mm_out$psi <- psi_std(mm_out)
  # ptable_std <- start_from_mm(ptable,
                              # mm_out)
  # ptable_std2 <- ptable_pop(model,
  #                           pop_es = pop_es,
  #                           standardized = TRUE)
  # mm_out_std <- model_matrices_pop(ptable_std)
  # mm_out_std2 <- model_matrices_pop(model,
  #                                   pop_es = pop_es,
  #                                   standardized = TRUE)
  mm_lm_out <- mm_lm(mm_out)
  mm_lm_dat_out <- mm_lm_data(mm_lm_out,
                              n = n,
                              number_of_indicators = number_of_indicators,
                              reliability = reliability,
                              keep_f_scores = keep_f_scores)
  fit <- lavaan::sem(model,
             data = mm_lm_dat_out,
             fixed.x = FALSE)
  tmp <- ptable
  tmp$est <- tmp$start
  fit0 <- lavaan::sem(tmp,
              do.fit = FALSE,
              fixed.x = FALSE)
  out <- list(ptable = ptable,
              # mm_out_original = mm_out_original,
              mm_out = mm_out,
              # mm_out_std = mm_out_std,
              # ptable_std = ptable_std,
              mm_lm_out = mm_lm_out,
              mm_lm_dat_out = mm_lm_dat_out,
              # ptable_std2 = ptable_std2,
              # mm_out_std2 = mm_out_std2,
              fit = fit,
              fit0 = fit0)
  out
}

test_check_out <- function(check_out) {
  expect_equal(diag(implied_sigma(check_out$mm_out)),
              rep(1, ncol(check_out$mm_lm_dat_out)),
              tolerance = 1e-1,
              ignore_attr = TRUE)
  # expect_equal(check_out$mm_out$psi,
  #             check_out$mm_out_std$psi)
  expect_equal(diag(cov(check_out$mm_lm_dat_out)),
              rep(1, ncol(check_out$mm_lm_dat_out)),
              tolerance = 1e-1,
              ignore_attr = TRUE)
  pt <- parameterTable(check_out$fit)
  pt0 <- parameterTable(check_out$fit0)
  pt <- order_cov(pt)
  pt0 <- order_cov(pt0)
  pt$tmp <- lav_partable_labels(pt)
  pt0$tmp <- lav_partable_labels(pt0)
  tmp2 <- intersect(pt$tmp, pt0$tmp)
  expect_equal(pt$est[match(tmp2, pt$tmp)],
               pt0$est[match(tmp2, pt0$tmp)],
               tolerance = 1e-1)
  # expect_equal(coef(check_out$fit),
  #             coef(check_out$fit0)[],
  #             tolerance = 1e-1)
  # expect_equal(check_out$mm_out_std$psi,
  #             check_out$mm_out_std2$psi,
  #             tolerance = 1e-1)
  # expect_equal(check_out$ptable_std$start,
  #             check_out$ptable_std2$start,
  #             tolerance = 1e-1)
}

test_that("ptable_pop", {

# Simple mediation model

model_simple_med <-
"
m ~ x
y ~ m + x
"

model_simple_med_es <- c(".beta." = "m",
                         "m ~ x" = "l",
                         "y ~ x" = "n")

check_out <- check_gen_dat(model_simple_med,
                           model_simple_med_es,
                           seed = 1234)

expect_equal(check_out$ptable$start[1:3],
             c(.50, .30, .00))

test_check_out(check_out)

# Parallel mediation model
# Correlated errors

model_med_parallel <-
"
m1 ~ x
m2 ~ x
y ~ m1 + m2 + x
m1 ~~ m2
"

model_med_parallel_es <- c(".beta." = "s",
                           "y ~ x" = "-m",
                           "m1 ~ x" = "l",
                           "m2 ~ x" = "s",
                           "y ~ m1" = "m",
                           "m1 ~~ m2" = "l")

check_out <- check_gen_dat(model_med_parallel,
                           model_med_parallel_es,
                           seed = 1234)

test_check_out(check_out)

# psych::describe(check_out$mm_lm_dat_out)

# Parallel mediation model
# Correlated errors not specified in the model

model_med_parallel <-
"
m1 ~ x
m2 ~ x
y ~ m1 + m2 + x
"

model_med_parallel_es <- c(".beta." = "s",
                           "y ~ x" = "-m",
                           "m1 ~~ m2" = "l")

# expect_warning(check_out <- check_gen_dat(model_med_parallel,
#                                           model_med_parallel_es,
#                                           seed = 1234))
check_out <- check_gen_dat(model_med_parallel,
                                          model_med_parallel_es,
                                          seed = 1234)
expect_equal(check_out$ptable$start[1:5],
             c(.10, .10, .10, .10, -.30))

test_check_out(check_out)

# psych::describe(check_out$mm_lm_dat_out)

# Moderation only

model_mod <-
"
y ~ x + w + x:w + c1
"

model_mod_es <- c(".beta." = "s",
                  "y ~ w" = "-m",
                  "x ~~ w" = "l")

# expect_warning(check_out <- check_gen_dat(model_mod,
#                                           model_mod_es,
#                                           seed = 1234))
check_out <- check_gen_dat(model_mod,
                           model_mod_es,
                           seed = 1234)
expect_equal(check_out$ptable$start[1:4],
             c(.10, -.30, .05, .10))
expect_equal(check_out$ptable$start[7],
             .50)

test_check_out(check_out)

dat <- check_out$mm_lm_dat_out
datz <- as.data.frame(scale(dat))

lm_out <- lm(y ~ x*w, datz)
expect_equal(coef(lm_out)[-1],
             c(.10, -.30, .05),
             tolerance = 1e-1,
             ignore_attr = TRUE)

# psych::describe(check_out$mm_lm_dat_out)

# Moderated mediation model

model_mod_med <-
"
m ~ x + w + x:w
y ~ m + z + m:z + x + u + x:u
"

model_mod_med_es <- c(".beta." = "s",
                      "y ~ x" = "-m",
                      "m ~ x:w" = "l",
                      "x ~~ w + z + u" = "s",
                      "w ~~ z + u" = "l")

check_out <- check_gen_dat(model_mod_med,
                           model_mod_med_es,
                           seed = 1234)
check_out$ptable$coeflabel <- lav_partable_labels(check_out$ptable)
expect_equal(check_out$ptable$start[1:9],
             c(.10, .10, .15, .10, .10, .05, -.30, .10, .05))
i <- match(c("w~~z", "u~~w"), check_out$ptable$coeflabel)
expect_equal(check_out$ptable$start[i],
             c(.50, .50))
i <- match(c("w~~x", "u~~x"), check_out$ptable$coeflabel)
expect_equal(check_out$ptable$start[i],
             c(.10, .10))

test_check_out(check_out)

dat <- check_out$mm_lm_dat_out
datz <- as.data.frame(scale(dat))
y ~ m + z + m:z + x + u + x:u
lm_out <- lm(y ~ m*z + x*u, datz)
expect_equal(coef(lm_out)[-1],
             c(.10, .10, -.30, .10, .05, .05),
             tolerance = 1e-1,
             ignore_attr = TRUE)

# psych::describe(check_out$mm_lm_dat_out)

# Other models

model2 <-
"
m1 ~ x + c1
m2 ~ m1 + x2 + c1
y ~  m2 + m1 + x + w + x:w + c1
"

model2_es <- c("m1 ~ x" = "-m",
               "m2 ~ m1" = "s",
               "y ~ m2" = "l",
               "y ~ x" = "m",
               "y ~ w" = "s",
               "y ~ x:w" = "s",
               "x ~~ w" = "s")

check_out <- check_gen_dat(model2,
                           model2_es,
                           seed = 1234)

test_check_out(check_out)

# psych::describe(check_out$mm_lm_dat_out)

# Simple mediation model
# Effect sizes set numerically

model_simple_med <-
"
m ~ x
y ~ m + x
"

model_simple_med_es <- c(".beta." = ".21",
                         "m ~ x" = ".31",
                         "y ~ x" = "n")

check_out <- check_gen_dat(model_simple_med,
                           model_simple_med_es,
                           seed = 1234)

expect_equal(check_out$ptable[1, "start"],
             .31)
expect_equal(check_out$ptable[2, "start"],
             .21)

})

Try the power4mome package in your browser

Any scripts or data that you put into this service are public.

power4mome documentation built on Sept. 9, 2025, 5:35 p.m.