Description Usage Arguments Details Value Note Author(s) References See Also Examples
View source: R/powerMediation.R
Calculate p-value and confidence interval for testing mediation effect based on Sobel's test.
1 2 3 4 5 | testMediation.Sobel(theta.1.hat,
lambda.hat,
sigma.theta1,
sigma.lambda,
alpha = 0.05)
|
theta.1.hat |
estimated regression coefficient for the predictor in the linear regression linking the predictor x to the mediator m (m_i=θ_0+θ_1 x_i + e_i, e_i\sim N(0, σ^2_e)). |
lambda.hat |
estimated regression coefficient for the mediator in the linear regression linking the predictor x and the mediator m to the outcome y (y_i=γ+λ m_i+ λ_2 x_i + ε_i, ε_i\sim N(0, σ^2_{ε})). |
sigma.theta1 |
standard deviation of \hat{θ}_1 in the linear regression linking the predictor x to the mediator m (m_i=θ_0+θ_1 x_i + e_i, e_i\sim N(0, σ^2_e)). |
sigma.lambda |
standard deviation of \hat{λ} in the linear regression linking the predictor x and the mediator m to the outcome y (y_i=γ+λ m_i+ λ_2 x_i + ε_i, ε_i\sim N(0, σ^2_{ε})). |
alpha |
significance level of a test. |
The test is for testing the null hypothesis θ_1λ=0 versus the alternative hypothesis θ_{1a}λ_a\neq 0 for the linear regressions:
m_i=θ_0+θ_1 x_i + e_i, e_i\sim N(0, σ^2_e)
y_i=γ+λ m_i+ λ_2 x_i + ε_i, ε_i\sim N(0, σ^2_{ε})
Test statistic is based on Sobel's (1982) test:
Z=\frac{\hat{θ}_1\hat{λ}}{\hat{σ}_{θ_1λ}}
where \hat{σ}_{θ_1λ} is the estimated standard deviation of the estimate \hat{θ}_1\hat{λ} using multivariate delta method:
σ_{θ_1λ}=√{θ_1^2σ_{λ}^2+λ^2σ_{θ_1}^2}
and \hat{σ}_{θ_1} is the estimated standard deviation of the estimate \hat{θ}_1, and \hat{σ}_{λ} is the estimated standard deviation of the estimate \hat{λ}.
pval |
p-value for testing the null hypothesis θ_1λ=0 versus the alternative hypothesis θ_{1a}λ_a\neq 0. |
CI.low |
Lower bound of the 100 (1-α)\% confidence interval for the parameter θ_1λ. |
CI.upp |
Upper bound of the 100 (1-α)\% confidence interval for the parameter θ_1λ. |
The test is a two-sided test. For one-sided tests, please double the
significance level. For example, you can set alpha=0.10
to obtain one-sided test at 5% significance level.
Weiliang Qiu stwxq@channing.harvard.edu
Sobel, M. E. Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology. 1982;13:290-312.
powerMediation.Sobel
,
ssMediation.Sobel
1 2 | testMediation.Sobel(theta.1.hat=0.1701, lambda.hat=0.1998,
sigma.theta1=0.01, sigma.lambda=0.02, alpha=0.05)
|
$pval
[1] 0
$CI.low
[1] 0.02625328
$CI.upp
[1] 0.04171868
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.