Nothing
## ---- echo=FALSE, warning=FALSE, message=FALSE---------------------------
library(powerlmm)
## ------------------------------------------------------------------------
p <- study_parameters(n1 = 11,
n2 = 10,
n3 = 4,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p
## ------------------------------------------------------------------------
get_power(p)
## ------------------------------------------------------------------------
get_VPC(p)
## ------------------------------------------------------------------------
get_correlation_matrix(p)
## ------------------------------------------------------------------------
get_sds(p)
## ---- fig.width = 8, message = FALSE, warning = FALSE--------------------
library(ggplot2)
x <- get_power_table(p, n2 = 5:20, n3 = c(4, 6, 8, 12), icc_slope = c(0.01, 0.05, 0.1))
plot(x) + scale_x_continuous(breaks = seq(20, 240, length.out = 5))
## ------------------------------------------------------------------------
p <- study_parameters(n1 = 11,
n2 = 10,
n3 = per_treatment(control = 2,
treatment = 10),
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
effect_size = cohend(-0.8,
standardizer = "pretest_SD")
)
p
## ------------------------------------------------------------------------
p <- study_parameters(n1 = 11,
n2 = per_treatment(control = 10,
treatment = 2),
n3 = per_treatment(control = 2,
treatment = 10),
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p
## ------------------------------------------------------------------------
p <- study_parameters(n1 = 11,
n2 = unequal_clusters(2, 5, 10, 30),
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p
## ------------------------------------------------------------------------
n2 <- per_treatment(control = unequal_clusters(5, 10, 15),
treatment = unequal_clusters(2, 3, 5, 5, 10, 15, 25))
p <- study_parameters(n1 = 11,
n2 = n2,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p
## ------------------------------------------------------------------------
n2 <- unequal_clusters(func = rpois(n = 5, lambda = 5))
p <- study_parameters(n1 = 3,
n2 = n2,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
get_power(p, R = 10, progress = FALSE)
## ------------------------------------------------------------------------
# sample cluster sizes in each treatment group independently
# but from the same distribution
func <- unequal_clusters(func = rpois(n = 5, lambda = 5))
n2 <- per_treatment(control = func,
treatment = func)
## ------------------------------------------------------------------------
p <- study_parameters(n1 = 11,
n2 = unequal_clusters(2, 5, 10, 30),
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
partially_nested = TRUE,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p
## ------------------------------------------------------------------------
p1 <- study_parameters(n1 = 11,
n2 = 5,
n3 = 5,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
partially_nested = TRUE,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p2 <- study_parameters(n1 = 11,
n2 = per_treatment(control = 50,
treatment = 5),
n3 = per_treatment(control = 1,
treatment = 5),
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
partially_nested = TRUE,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p1
p2
## ------------------------------------------------------------------------
p <- study_parameters(n1 = 11,
n2 = 10,
n3 = 5,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.02,
icc_slope = 0.05,
dropout = dropout_weibull(proportion = 0.3,
rate = 1/2),
fixed_slope = -0.5/10,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
p
## ---- fig.width=8--------------------------------------------------------
plot(p)
## ---- message = FALSE----------------------------------------------------
get_power(p)
## ---- fig.width=4--------------------------------------------------------
d <- per_treatment(control = dropout_weibull(proportion = 0.3,
rate = 1/2),
treatment = dropout_weibull(proportion = 0.5,
rate = 2))
p2 <- study_parameters(n1 = 11,
n2 = 10,
n3 = 5,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.02,
icc_slope = 0.05,
dropout = d,
fixed_slope = -0.5/10,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
plot(p2, type = "dropout")
## ---- message = FALSE----------------------------------------------------
p2 <- study_parameters(n1 = 11,
n2 = c(5, 10, 15, 20, 30),
n3 = 5,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.02,
icc_slope = 0.05,
dropout = dropout_weibull(proportion = 0.3,
rate = 1/2),
fixed_slope = -0.5/10,
effect_size = cohend(-0.8,
standardizer = "pretest_SD"))
get_DEFT(p2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.